, Volume 588, Issue 1, pp 205–212 | Cite as

Indirect estimation of benthic secondary production in the Lagoon of Venice (Italy)

  • D. Tagliapietra
  • M. Cornello
  • G. Pessa


Five published indirect methods to estimate benthic secondary production of intertidal mudflats and a new proposed formulation based on quarter-power allometric scaling and the “Universal Temperature Dependence” of biological processes (UTD) were compared. For this purpose, a dataset consisting of an annual series of samples, taken from the Lagoon of Venice from March 1996 to March 1997, at sites characterised by different seagrass coverage was used. All methods resulted in that biomass and secondary production decreased progressively when moving from the seagrass meadow toward areas of unvegetated substrate, suggesting an influence of the available marine phanerogams on the neighbouring sites. The equation proposed in this paper gives results comparable with those obtained using empirical regression models from literature. The main conclusion from this study is that general equations proposed by the “metabolic theory of ecology” can be applied for indirect estimations of secondary production of benthic communities.


Benthos Lagoon of Venice Quart-power allometry Secondary production 



Sincere thanks are due to Professor Andreina Zitelli for her support, to the guest editor Professor Victor N. de Jonge for stimulating us to thoroughly revise and resubmit the manuscript, to Verena Brauer for checking the mathematical formulations, to Sophia Fox and Mirta Teichberg for the revision of the text and to the reviewers of this paper because of their constructive comments.


  1. Allen, K. R., 1950. The computation of production in fish populations. New Zealand Science Review 8: 89 pp.Google Scholar
  2. Allen, K. R., 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada 28: 1537–1581.Google Scholar
  3. Banse, K. & S. Mosher, 1980. Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs 50: 355–379.CrossRefGoogle Scholar
  4. Benke, A., 1993. Concepts and patterns of invertebrate production in running waters. Verhandlungen Internationale Vereinigung fur theoretische und angewandte Limnologie 25: 15–38.Google Scholar
  5. Brey, T., 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. Archive of Fishery and Marine Research 32: 329–343.Google Scholar
  6. Brey, T., 2001. Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2. Alfred Wegener Institute for Polar and Marine Research, Germany.
  7. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85(7): 1771–1789.CrossRefGoogle Scholar
  8. Buffagni, A. & E. Comin, 2000. Secondary production of benthic communities at the habitat scale as a tool to assess ecological integrity in mountain streams. Hydrobiologia 422/423: 183–195.CrossRefGoogle Scholar
  9. Calder, W. A., 1984. Size, Function, and Life History. Harvard University Press, Cambridge, MA.Google Scholar
  10. Cartes, J. E., T. Brey, J. C. Sorbe & F. Maynou, 2002. Comparing production–biomass ratios of benthos and suprabenthos in macrofaunal marine crustaceans. Canadian Journal of Fisheries and Aquatic Sciences 59(10): 1616–1625.CrossRefGoogle Scholar
  11. Charnov, L. E. & J. F. Gillooly, 2003. Thermal time: body size, food quality and the 10°C rule. Evolutionary Ecology Research 5: 43–51.Google Scholar
  12. Clarke, A., 2004. Is there a universal temperature dependence of metabolism?. Functional Ecology 18(2): 252–256.CrossRefGoogle Scholar
  13. Clarke, A. & K. P. P. Fraser, 2004. Why does metabolism scale with temperature? Functional Ecology 18: 243–251.CrossRefGoogle Scholar
  14. Dodds, P. S., D. H. Rothman, & J. S. Weitz, 2001. Reexamination of the ‘3/4-law’ of metabolism. Journal of Theoretical Biology 209: 9–27.PubMedCrossRefGoogle Scholar
  15. Downing, J. A., 1984. Assessment of secondary production: the first step. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell, Oxford, 1–18.Google Scholar
  16. Dupra, V., S. V. Smith, J. I. Marshall Crossland & C. J. Crossland, 2001. Coastal and Estuarine Systems of the Mediterranean and Black Sea Regions: Carbon, Nitrogen and Phosphorus Fluxes. LOICZ Reports & Studies No. 19 LOICZ, Texel, The Netherlands.Google Scholar
  17. Edgar, G. J., 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. Journal of Experimental Marine Biology and Ecology 137: 195–214.CrossRefGoogle Scholar
  18. Enquist, B. J., J. H. Brown & G. B. West, 1998. Allometric scaling of plant energetics and population density. Nature 395: 163–165.CrossRefGoogle Scholar
  19. Enquist, B. J., G. B. West, E. L. Charnov & J. H. Brown, 1999. Allometric scaling of production and life-history variation in vascular plants. Nature 401: 907–911.CrossRefGoogle Scholar
  20. Ernest, S. K. M., B. J. Enquist, J. H. Brown, E. L. Charnov, J. F. Gillooly, V. M. Savage, E. P. White, F. A. Smith, E. A. Hadly, J. P. Haskell, S. K. Lyons, B. A. Maurer, K. J. Niklas & B. Tiffney, 2003. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters 6: 990–995.CrossRefGoogle Scholar
  21. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage & E. L. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.PubMedCrossRefGoogle Scholar
  22. Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage & J. H. Brown, 2002. Effects of size and temperature on developmental time. Nature 417: 70–73.PubMedCrossRefGoogle Scholar
  23. Hynes, H. B. N. & M. J. Coleman, 1968. A simple method of assessing the annual production of stream benthos. Limnology and Oceanography. 13: 569–573.Google Scholar
  24. Hynes, H. B. N., 1961. The invertebrate fauna of a Welsh mountain stream. Archiv fur Hydrobiologie 57: 344–388.Google Scholar
  25. Kalejta, B. & P. A. R. Hockey, 1991. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa. Estuarine, Coastal and Shelf Science 33: 175–191.CrossRefGoogle Scholar
  26. Kleiber, M., 1932. Body size and metabolism. Hilgardia 6: 315– 353.Google Scholar
  27. Krueger, C. C. & F. B. Martin, 1980. Computation of confidence intervals for the size-frequency (Hynes) method of estimating secondary production. Limnology and Oceanography 25(4): 773–777.CrossRefGoogle Scholar
  28. McLusky, D. S., 1989. The Estuarine Ecosystem, 2nd edn. Blackie, Glasgow.Google Scholar
  29. McMahon, T. A. & J. T. Bonner, 1983. On Size and Life. Scientific American Library, New York.Google Scholar
  30. Mistri, M., R. Rossi & E. A. Fano, 2001. Structure and secondary production of a soft bottom macrobenthic community in a brackish lagoon (Sacca di Goro, north-eastern Italy) estuarine. Coastal and Shelf Science 52(5): 605–616.CrossRefGoogle Scholar
  31. Morin, A. & N. Bourassa, 1992. Modèles empiriques de la production annuelle et du raport P/B d’invertebrés benthiques d’eau courante. Canadian Journal of Fisheries and Aquatic Sciences 49: 532–539.CrossRefGoogle Scholar
  32. Pessa, G., D. Tagliapietra, M. Cornello & A. Zitelli, 2001. Dinamica della comunità zoobentonica in relazione alla presenza di Zostera noltii Horneman in Laguna di Venezia. Biologia Marina Mediterranea, 8(1): 388–393.Google Scholar
  33. Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.Google Scholar
  34. Plante, C. & J. A. Downing, 1989. Production of freshwater Invertebrate Populations in Lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1489–1497.Google Scholar
  35. Reise, K., 1985. Tidal flat ecology. An Experimental Approach to Species Interactions. Springer-Verlag, Berlin.Google Scholar
  36. Robertson, A. I., 1979. The relationship between annual production: biomass ratios and lifespans for marine macrobenthos. Oecologia 38: 193:202.CrossRefGoogle Scholar
  37. Savage, V. M., J. F. Gillooly, E. L. Charnov, J. H. Brown & G. B. West, 2004a. Effects of body size and temperature on population growth. American Naturalist 163(3): 429–441.CrossRefGoogle Scholar
  38. Savage, V. M., J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist & J. H. Brown, 2004b. The predominance of quarter-power scaling in biology. Functional Ecology 18: 257–282.CrossRefGoogle Scholar
  39. Schmidt-Nielsen, K., 1984. Scaling: Why Is Animal Size So Important? Cambridge University Press, Cambridge.Google Scholar
  40. Schwinghamer, P., B. Hargrave, D. Peer & C. M. Hawkins, 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Marine Ecology Progress Series 31: 131–142.Google Scholar
  41. Sprung, M., 1993. Estimating macrobenthic secondary production from body-weight and biomass - a field-test in a non-boreal intertidal habitat. Marine Ecology Progress Series 100(1–2): 103–109.Google Scholar
  42. Suarez, R. K., C. A. Darveau & J. J. Childress, 2004. Metabolic scaling: a many-splendoured thing. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139(3): 531–541.CrossRefGoogle Scholar
  43. Tumbiolo, M. L. & J. A. Downing, 1994. An empirical model for the prediction of secondary production in marine benthic invertebrate populations. Marine Ecology Progress Series 114(1–2): 165–174.Google Scholar
  44. West, G. B., J. H. Brown & B. J. Enquist, 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.PubMedCrossRefGoogle Scholar
  45. West, G. B., J. H. Brown & B. J. Enquist, 1999a. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284: 1677–1679.CrossRefGoogle Scholar
  46. West, G. B., J. H. Brown & B. J. Enquist, 1999b. A general model for the structure and allometry of plant vascular systems. Nature 400(6745): 664–667.CrossRefGoogle Scholar
  47. West, G. B., J. H. Brown & B. J. Enquist, 2001. A general model for ontogenetic growth. Nature 413(6856): 628–631.PubMedCrossRefGoogle Scholar
  48. White, C. R. & R. S. Seymour, 2003. Mammalian basal metabolic rate is proportional to body mass 2/3. Proceedings of 100, the National Academy of Sciences USA 100: 4046–4049.CrossRefGoogle Scholar
  49. Wilson, J. G., 2002. Productivity, fisheries and aquaculture in temperate estuaries. Estuarine, Coastal and Shelf Science 55(6): 953–967.CrossRefGoogle Scholar
  50. Worm, B. & J. E. Duffy, 2003. Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution 18(12): 628–632.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.CNR-Istituto di Scienze Marine, VeneziaVeniceItaly
  2. 2.ICRAM, Loc. BrondoloVeniceItaly
  3. 3.Dipartimento di Scienze AmbientaliUniversità Ca’ Foscari di VeneziaVeniceItaly

Personalised recommendations