Skip to main content
Log in

Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry

  • Ostracoda (ISO15)
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

An attempt has been made at a comprehensive study of the diversity and distribution of subterranean ostracods in the Pilbara region, northwestern Australia. The area is a “hot spot” for subterranean biodiversity, some of which is currently under threat from extensive mining operations. Both bore and well sites were targeted, totalling 445 sites, to obtain a thorough coverage of the 200,000 km2. In addition, physical and hydrochemical measurements were obtained for all of the samples (temperature, conductivity, dissolved oxygen, pH, Eh, turbidity, nutrients, major ions). Ostracods were retrieved from approximately 47% of the samples and 56% of the sites. Twenty-one genera and around 110 species of ostracods have been identified. Of these, 72 are new species and a further 10 are currently in open nomenclature, due to the lack of suitable material for formal taxonomic description. The Candoninae are particularly well represented with 12 genera; some, such as Areacandona and Deminutiocandona, with 25 and 10 species respectively. Most sites (80%) were dominated by only one or two species, with up to six species at some sites. Population density varied from 1–370 individuals/sample. The most abundant and diverse sites occur in fresh, bicarbonate-rich aquifers utilised for water extraction, such as Pannawonica (Robe River), Cane River and Millstream. There is a clear distinction between taxa at the genus level from coastal and low-lying alluvial sites, and upland sites (>300 m altitude). Beyond this, the majority of species are confined within a surface water catchment, or in many cases, a specific aquifer. There are, however, some morphological similarities of the carapaces between different species within similar hydrogeologic settings. Ornate and ridged-valved species are common in the Mg–HCO3 waters of the Newman and Marillana Creek areas, whereas smooth-shelled, tapered forms are prevalent in alluvial aquifers. The more saline, Na–Cl rich aquifers at the edge of Great Sandy Desert have a particularly distinctive fauna, including one almost triangular species. The distribution of the stygobitic ostracod species in relation to the hydrogeology and water chemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.

    Google Scholar 

  • Balleau, W. P., 1972. Outline of groundwater in the Fortescue River valley: Western Australia Geological Survey Record 1986/8.

  • Barnett, J. C. & D. P. Commander, 1985. Hydrogeology of the Western Fortescue Valley, Pilbara region, Western Australia. Western Australia Geological Survey Record 1986/8.

  • Beard, J. S., 1973. The elucidation of palaeodrainage patterns in Western Australia through vegetation mapping. Vegmap Publications, Perth. Vegetation Survey of Western Australia, Occasional Paper 1.

  • Beard, J. S., 1998. Position and development of the history of the central watershed of the Western Shield, Western Australia. Journal of the Royal Society of Western Australia 81: 157–164.

    Google Scholar 

  • BMR Paleogeographic Group, 1990. Australia: Evolution of a Continent. Bureau of Mineral Resources, Australia.

    Google Scholar 

  • Bowler, J. M., 1976. Aridity in Australia: age origins and expression in aeolian landforms and sediments. Earth-Science Reviews 12: 279–310.

    Article  Google Scholar 

  • Bradbury, J. H. & W. D. Williams, 1996a. Two new species of anchialine amphipod (Crustacea: Hadzzidae: Liagoceradocus) from Western Australia. Records of the Western Australian Museum 17: 395–409.

    Google Scholar 

  • Bradbury, J. H. & W. D. Williams, 1996b. Freshwater amphipods from Barrow Island, Western Australia. Records of the Western Australian Museum 48: 33–74.

    Google Scholar 

  • Brady, G. S., 1886. Notes on the freshwater entomostraca from South Australia. Proceedings of the Scientific Meetings of the Zoological Society of London 1: 82–93.

    Google Scholar 

  • Culver, D. C., 1982. Cave Life: Evolution and Ecology. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Christiansen, K., 1962. Proposition pour la classification des animaux cavernicoles. Spelunca 2: 76–78.

    Google Scholar 

  • Danielopol, D. L., M. Creuze des Chatelliers, F. Mösslacher, P. Popisil & R. Popa, 1994. Adaptation of Crustacea to interstitial habitats: a practical agenda for ecological studies. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, USA, 218–243.

    Google Scholar 

  • Danielopol, D. L., A. Baltanas & W. F. Humphries, 2000. Danielopolina kornickeri sp. nov. (Ostracoda, Thaumatocypridoidea) from a Western Australian anchialine cave: morphology and evolution. Zoologica Scripta 29: 1–16.

    Article  Google Scholar 

  • Danielopol, D. L. & G. Hartmann, 1986. Ostracoda. Part I: stygobiont Ostracoda from inland subterranean waters. In Botosaneanu, L. (ed.), Stygofauna Mundi. A Faunistic Distributional and Ecological Synthesis of the World of Fauna Inhabiting Subterranean Waters. E.J Brill, Leiden, 265–267.

    Google Scholar 

  • Davies, P. M., 1996. The influence of flow conditions on the structure of the aquatic fauna of streams of the Pilbara, Western Australia. In Noonan, D. (ed.), An Ecological Perspective on Cooper’s Creek. Australian Conservation Foundation, Adelaide, 3.

    Google Scholar 

  • De Deckker, P., 1982. Non-marine Ostracods from two Quaternary profiles at Pulbeena and Mowbray Swamps. Alcheringa 6: 249–274.

    Google Scholar 

  • De Laurentis, P., G. L. Pesce & W. F. Humphreys, 2001. Copepods from ground waters of Western Australia, VI. Cyclopidae (Crustacea: Copepoda) from Yilgarn region and Swan coastal plain. Records of the Western Australian Museum 19: 243–257.

    Google Scholar 

  • Eberhard, S. M., S. A. Halse, M. D. Scanlon, J. S. Cocking & H. J. Barron, 2005a. Assessment and conservation of aquatic life in the subsurface of the Pilbara region, Western Australia. In Gibert, J. (ed.), World Subterranean Biodiversity, Proceedings of an International Symposium held 8th–10th December 2004 in Villeurbanne, France, Université Claude Bernard of Lyon 1, PASCALIS European Research Programme, 61–68.

  • Eberhard, S. M., S. A. Halse & W. F. Humphreys, 2005b. Stygofauna in the Pilbara region, north-west Western Australia: a systematic review. Journal of the Royal Society of Western Australia 88: 167–176.

    Google Scholar 

  • Forester, R. M., 1983. Relationship of two lacustrine ostracode species to solute composition and salinity: implications for palaeohydrology. Geology 11: 435–438.

    Article  CAS  Google Scholar 

  • Forester, R. M., 1986. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology 14: 796–798.

    Article  CAS  Google Scholar 

  • Gibert, J., J. A. Stanford, M.-J. Dole-Olivier & J. V. Ward, 1994. Basic attributes of groundwater ecosystems and prospects for research. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, USA, 8–40.

    Google Scholar 

  • Gibert, J., 2004. How to assess and conserve groundwater biodiversity. The PASCALIS European project in the international context: main results. Programme and Abstracts of the Symposium of World Subterranean Biodiversity, Lyon, 14.

  • Halse, S. A., R. J. Shiel, A. W. Storey, D. H. D. Edward, I. Lansbury, D. J. Cale & M. S. Harvey, 2000. Aquatic invertebrates and waterbirds of wetlands and rivers of the southern Carnarvon Basin, Western Australia. Records of the Western Australian Museum Supplement 61: 217–265.

    Google Scholar 

  • Halse, S. A., M. D. Scanlon & J. S. Cocking, 2002. Do springs provide a window to the groundwater fauna of the Australian arid zone? In International Association of Hydrogeologists (ed.), Balancing the Groundwater Budget, Proceedings of the International Groundwater Conference, Darwin, 2002, 1–12.

  • Hartmann, G., 1978. Die Ostracoden der Ordnung Podocopida G.W. Müller, 1894 der tropisch-subtropisch Westküste Australiens (zwischen Derby im Norden und Perth im Süden). In Hartmann, G., G. Hartmann-Schröder (eds), Zur Kenntnis des Eulitorals der australischen Küsten unter besonderer Berücksichtigung der Polychaeten und Ostracoden, Teil 1. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 75: 64–219.

  • Humphreys, W. F., 1993a. Patterns of genetic diversity within selected subterranean fauna of the Cape Range Peninsula, Western Australia: systematic and biogeographic implications. Records of the Western Australian Museum Supplement 45: 145–164.

    Google Scholar 

  • Humphreys, W. F., 1993b. The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range Peninsula, Western Australia. Records of the Western Australian Museum Supplement 45: 165–192.

    Google Scholar 

  • Humphreys, W. F., 1993c. Stygofauna in semi-arid tropical Western Australia: a Tethyan connection? Mémoire de Biospéléologie 20: 111–116.

    Google Scholar 

  • Humphreys, W. F., 1999. Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages In Ponder, W. & D. Lunney (eds), The Other 99%. The Conservation and Biodiversity of Invertebrates. Royal Zoological Society of New South Wales, Mosman, 219–227.

  • Humphreys, W. F., 2000. The hypogean fauna of the Cape Range Peninsula and Barrow Island, northwestern Australia. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World, Vol. 30 – Subterranean Ecoystems. Elsevier, Amsterdam, 581–601.

    Google Scholar 

  • Humphreys, W. F., 2001a. The subterranean fauna of Barrow Island, Northwestern Australia, and its environment. Mémoire de Biospéléologie 26: 108–127.

    Google Scholar 

  • Humphreys, W. F., 2001b. Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum, Supplement 64: 63–83.

    Google Scholar 

  • Jaume, D. & W. F. Humphreys, 2001. A new genus of epacteriscid calanoid copepod from an anchialine sinkhole of Northwestern Australia. Journal of Crustacean Biology 21: 157–169.

    Article  Google Scholar 

  • Johnson, S. L. & A. H. Wright, 2001. Central Pilbara Groundwater Study. Water and Rivers Commission, Perth.

    Google Scholar 

  • Karanovic, I., 2003. Towards a revision of Candoninae (Crustacea: Ostracoda): description of two new genera from Australian groundwaters. Species Diversity 8: 353–383.

    Google Scholar 

  • Karanovic, I., 2005. Towards a revision of Candoninae (Crustacea: Ostracoda): Australian representatives of the subfamily, with descriptions of three new genera and seven new species. New Zealand Journal of Marine and Freshwater Research 39: 29–75.

    Article  Google Scholar 

  • Karanovic, I. & P. Marmonier, 2002. On the genus, Candonopsis (Crustacea: Ostracoda: Candoninae) in Australia, with a key to the world recent species. Annuals of Limnology 38: 199–240.

    Google Scholar 

  • Karanovic, I. & P. Marmonier, 2003. Three new genera and nine new species of the subfamily Candoninae (Crustacea: Ostracoda: Podocopida) from the Pilbara region (Western Australia). Beaufortia 53: 1–51.

    Google Scholar 

  • Karanovic, I., On the genus Gomphodella De Deckker, 1981 (Crustacea, Ostracoda, Limnocytheridae) with descriptions of three new species from Australia and redescription of the type species. Species Diversity (in press).

  • Marmonier, P., P. Vervier, J. Gibert & M.-J. Dole-Olivier, 1993. Biodiversity in groundwaters. Trends in Ecology and Evolution 8: 392–395.

    Article  Google Scholar 

  • Marmonier, P., M. Creuzé des Châtelliers, M. J. Dole-Oliver, S. Plenet & J. Gibert, 2000. Rhône groundwater systems. In Wilkins, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World 30 – Subterranean Ecosystems. Elsevier, Amsterdam, 481–512.

    Google Scholar 

  • Martens, K. & G. Rossetti, 2002. On the Darwinulidae (Crustacea, Ostracoda) from Oceania. Invertebrate Systematics 16: 195–208.

    Article  Google Scholar 

  • McKenzie, K. G., 1966. Freshwater Ostracoda from north-western Australia. Australian Journal of Marine and Freshwater Research 17: 259–279.

    Article  Google Scholar 

  • Pankhurst, D. L. & C. A. J. Appelo, 1999. User’s Guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources investigation report 99-4259.

  • Pinder, A. M., S. A. Halse, J. M. McRae & R. J. Shiel, 2004. Aquatic invertebrate assemblages of wetlands and rivers in the wheatbelt region of Western Australia. Records of the Western Australian Museum Supplement 67: 7–37.

    Google Scholar 

  • Poore, G. C. B. & W. F. Humphreys, 1998. The first record of the Spelaeogriphacea (Crustacea) from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia. Crustaceana 71: 721–742.

    Article  Google Scholar 

  • Radke, L. C., S. Juggins, S. A. Halse, P. De Deckker & T. Finston, 2003. Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Marine and Freshwater Research 54: 895–912.

    Article  CAS  Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1997. Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. Internationale Revue gesamten der Hydrobiologie 82: 121–145.

    Article  Google Scholar 

  • Sars, G. O., 1896. On fresh-water entomostraca from the neighbourhood of Sydney, partly raised from dried mud. Archiv for Mathematik og Naturvidenskab 18: 1–81.

    Google Scholar 

  • Szczechura, J., 1980. Causes for speciation in Ostracods. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 7: 439–441.

    Google Scholar 

  • Strayer, D. L., 1994. Limits to the biological distributions in groundwater. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, 287–310.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2002. CANONO Reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA.

  • Trendall, A. F., 1990. Hamersley basin. In geology and mineral resources of Western Australia. Western Australian Geological Survey, Memoir 3: 163–191.

    Google Scholar 

  • van de Graaff, W. J. E., R. W. A. Crowe, J. A. Bunting & M. J. Jackson, 1977. Relict early Cainozoic drainages in arid Western Australia. Zeitschrift für Geomorphologie 21: 379–400.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 1999. Three new genera and five new species of Dytiscidae (Coleoptera) from underground waters in Australia. Records of the South Australian Museum 32: 121–142.

    Google Scholar 

  • Wilson, G. D. F. & W. F. Ponder, 1992. Extraordinary new subterranean isopods (Peracarida: Crustacea) from the Kimberley region, Western Australia. Records of the Western Australian Museum 44: 279–298.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank M. Scanlon, J. Cocking, and H. Barron for tirelessly undertaking the fieldwork and sorting out the Ostracods on which this paper is based. Dr I. Karanovic identified the Ostracods in some of the samples on which this paper is based and provided advice on ostracod identification. Jenny McGuire at the Western Australian Chemistry Centre performed the analyses on water chemistry. JMR would also like to thank the Statistical Consulting Unit and the Electron Microscopy Unit of the ANU. Funding for this project was provided by Conservation and Land Management, WA awarded to PDD. We are grateful for comments of two anonymous reviewers that clarified some of the finer points of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Reeves.

Electronic supplementary material

Below are the electronic supplementary materials.

Appendix1.doc

Appendix2.doc

Appendix3.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeves, J.M., De Deckker, P. & Halse, S.A. Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585, 99–118 (2007). https://doi.org/10.1007/s10750-007-0632-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0632-7

Keywords

Navigation