, Volume 584, Issue 1, pp 337–346 | Cite as

The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia)

  • Marija Gligora
  • Anđelka Plenković-Moraj
  • Koraljka Kralj
  • István Grigorszky
  • Danijela Peroš-Pucar
Shallow Lakes


The shallow Lake Vrana was studied over a 1-year period, special attention being paid to the phytoplankton. Phytoplankton was investigated monthly with respect to temporal variability of selected environmental factors. The regular annual development observed was in species contribution to total biomass rather than in seasonal changes in species composition. The assemblage was dominated by Cosmarium tenue Arch. and Synedra sp. In winter and in spring the phytoplankton assemblage was dominated by Cosmarium tenue and high contribution of Synedra sp. was observed during the summer and autumn. Results suggest that concentrations of inorganic nitrogen and phosphorus were critical in regulating phytoplankton biomass and species dominance.


Phytoplankton Shallow lake Species dominance 



We would specially like to thank Professor M. Mrakovčić, who initiated the study of Lake Vrana. We, are also we are grateful to the Croatian Ministry of Science, Education and Sport, and the Hungarian Scholarship Board for financial support. Special gratitude goes to the reviewers whose comments helped us improve this paper.


  1. American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Waster Water, 19th edn. APHA, Washington.Google Scholar
  2. Arar, E. J. & G. B. Collins, 1997. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio.Google Scholar
  3. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 637–709.CrossRefGoogle Scholar
  4. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth.Google Scholar
  5. Coesel, P. F. M., 1994. On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algological Studies 73: 65–74.Google Scholar
  6. Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography and Marine Biology – An Annual Review 28:73–153.Google Scholar
  7. Fernández-Aláez, M., C. Fernández-Aláez, E. Bécares, M. Valentín, J. Goma & P. Castrill, 2004. A 2-year experimental study on nutrient and predator influences on food web constituents in a shallow lake of north-west Spain. Freshwater Biology 49: 1574–1592.CrossRefGoogle Scholar
  8. Gliwicz, Z. M., 2002. On the different nature of top–down and bottom–up effects in pelagic food webs. Freshwater Biology 47: 2296–2312.CrossRefGoogle Scholar
  9. Grover, J. P., 1989. Influence of cell shape and size on algal competitive ability. Journal of Phycology 25: 402–405.CrossRefGoogle Scholar
  10. Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410.CrossRefGoogle Scholar
  11. Jackson, D. A., 1993. Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of associations, and ordination methods. Hydrobiologia 268: 9–26.Google Scholar
  12. Jensen, J. P., P. Kristensen & E. Jeppensen, 1991. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 24: 201–204.Google Scholar
  13. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Laurisden, L. J. Pedersen & L. Jensen, 1997. Top–down control in freshwater lake: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.CrossRefGoogle Scholar
  14. Kilham, P. & D. Tilman, 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergebnisse der Limnologie 13: 110–111.Google Scholar
  15. Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York.Google Scholar
  16. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimations by counting. Hydrobiologia 11: 6–21.CrossRefGoogle Scholar
  17. Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.CrossRefGoogle Scholar
  18. Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1–11.CrossRefGoogle Scholar
  19. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.CrossRefGoogle Scholar
  20. Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.CrossRefGoogle Scholar
  21. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  22. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  23. Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.CrossRefGoogle Scholar
  24. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf. Ecology Institute.Google Scholar
  25. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  26. Rojo, C. & M. Álvarez-Cobelas, 2003. Are there steady state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.CrossRefGoogle Scholar
  27. Rott, E., 1981. Some results from phytoplankton counting intercalibration. Schweizerische Zeitschrift für Hydrologie 43: 35–62.CrossRefGoogle Scholar
  28. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.Google Scholar
  29. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  30. Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18: 275–284.CrossRefGoogle Scholar
  31. Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient rich lake (Lake Constance). Progress in Phycological Research 5: 122–178.Google Scholar
  32. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, New York: 57–107.Google Scholar
  33. Sommer U., A. Gaedeke & A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance. II: the response of phytoplankton taxonomic composition. Oecologia 93: 276–284.CrossRefGoogle Scholar
  34. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.CrossRefGoogle Scholar
  35. Spijkerman, E. & P. F. M. Coesel, 1996a. Competition for phosphorus among planktonic desmid species in continuous flow culture. Journal of Phycology 32: 939–948.CrossRefGoogle Scholar
  36. Spijkerman, E. & P. F. M. Coesel, 1996b. Phosphorus uptake and growth kinetics of two planktonic desmid species. European Journal of Phycology 31: 53–60.CrossRefGoogle Scholar
  37. Spijkerman, E. & P. F. M. Coesel, 1998. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope. Freshwater Biology 39: 503–513.CrossRefGoogle Scholar
  38. Stephen, D., D. M. Balayla, S. E. Collings & B. Moss, 2004. Two mesocosm experiments investigating the control of summer phytoplankton growth in a small shallow lake. Freshwater Biology 49: 1551–1564.CrossRefGoogle Scholar
  39. Stephen, D., B. Moss & G. Phillips, 1998. The relative importance of top–down and bottom–up control of phytoplankton in a shallow macrophyte-dominated lake. Freshwater Biology 39: 699–713.CrossRefGoogle Scholar
  40. Suttle, C. A., J. G. Stockner & P. J. Harrison, 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Canadian Journal of Fisheries and Aquatic Sciences 44: 1768–1774.Google Scholar
  41. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.CrossRefGoogle Scholar
  42. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  43. Van Donk, E., R. D. Gulati, A. Iedema & J. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.CrossRefGoogle Scholar
  44. Whitton, B. A., 1967. Phosphate accumulation by colonies of Nostoc. Plant and Cell Physiology 8: 293–296.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marija Gligora
    • 1
  • Anđelka Plenković-Moraj
    • 1
  • Koraljka Kralj
    • 1
  • István Grigorszky
    • 2
  • Danijela Peroš-Pucar
    • 3
  1. 1.Division of Biology, Department of Botany, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Botanical DepartmentDebrecen UniversityDebrecenHungary
  3. 3.Public Health Institute ZadarZadarCroatia

Personalised recommendations