Advertisement

Hydrobiologia

, Volume 579, Issue 1, pp 15–27 | Cite as

The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus)

  • Christoph Hauer
  • Günther Unfer
  • Stefan Schmutz
  • Helmut Habersack
Opinion Paper

Abstract

An ecologically orientated flood protection project was implemented at the Austrian lowland Sulm River. Habitat modelling was conducted during a 3-year monitoring program to assess the effects of river bed embankment and the initiation of a new meander by constructing an initial side channel, and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with statistical methods. This study focused on the necessity for including stability analysis when modelling spawning grounds. The critical erosion parameter of the cobbles at spawning grounds was analysed using numerical modelling combined with substrate maps of potential spawning grounds of nase (Chondrostoma nasus). Due to the specific characteristics of this reach of the Sulm River, instability of the riffles can hamper successful reproduction in nase. Spawning grounds of Chondrostoma nasus and their stability must be guaranteed at least for the duration of incubation. This morphodynamic necessity should be incorporated in future restoration projects and when artificially restoring spawning habitats.

Keywords

Habitat modelling Restoration measures River monitoring Chondrostoma nasus Riffles Spawning habitats 

Notes

Acknowledgements

The author wishes to thank DI Karoline Maierhofer and DI Novak Irene for support, DI Rudolf Hornich from the Regional Government of Styria for funding the monitoring.

References

  1. Baras, E., 1994. Constraints imposed by high-densities on behavioral spawning strategies in the barbell, Barbus barbus. Folia Zoological 43(3): 255–266.Google Scholar
  2. Baras, E., 1995. Thermal related variations of seasonal and daily spawning periodicity in barbus barbus. Journal of Fish Biology 46: 915–917.Google Scholar
  3. Baril, M. & P. Magnan, 2002. Seasonal timing and diel activity of lacustrine brook charr, Salvelinus fontinalis, spawning in a lake outlet. Environmental Biology of Fishes 64: 175–181.CrossRefGoogle Scholar
  4. Bovee, K. D., 1986. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methology . Biological report 86, US Fish and Wildlife Service.Google Scholar
  5. Brodeur, P., M. Mingelbier & J. Morin, 2004. Impact of water discharge on fish reproduction measured using 2D numerical habitat in the St Lawrence River, Canada. Proceeding of the Fifth International Symposium in Ecohydraulics, 237–241.Google Scholar
  6. Brooks, A. J., T. Haeusler, I. Reinfels & S. Williams, 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331–334.CrossRefGoogle Scholar
  7. Church, M., J. F. Wolcott & W. K. Fletcher, 1991. A test of equal mobility in fluvial sediment transport – behaviour of the sand fraction. Water Resources Research 27: 2941–2951.CrossRefGoogle Scholar
  8. Darchambeau, F. & P. Poncin, 1997. Field observation of the spawning behaviour of European grayling. Journal of Fish Biology 51: 1066–1068.CrossRefGoogle Scholar
  9. Delft Hydraulics, 2006. Technical Documentation of the P.-EMS. Delft Hydraulics Laboratories, NL.Google Scholar
  10. Elliot, C. R. N., D. J. Willis & M. C. Acreman, 1996. Application of the physical habitat simulation (PHABSIM) model as an assessment tool for riverine habitat restoration techniques. In Leclerc, M., et al. (eds), Ecohydraulics 2000, Proceedings of the Second IAHR International Symposium on Habitat Hydraulics. Quebec, Canada. Volume B, 607–618.Google Scholar
  11. Elliot, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.Google Scholar
  12. Emery, J. C., A. M. Gurnell, C. Geog, N. J. Clifford & G. E. Petts, 2004. Characteristics and controls of gravel-bed riffles: an analysis of data from the river habitat survey. Water and Environmental Journal 19: 210–216.Google Scholar
  13. Fredrich, F., S. Ohmann, B. Curio & F. Kirschbaum, 2003. Spawning migrations of the chub in the River Spree, Germany. Journal of Fish Biology 63: 710–723.CrossRefGoogle Scholar
  14. Gard, M., 2005. Variability in flow-habitat relationships as a function of transect number for PHABSIM modelling. River Research and Application 21: 1013–1019.CrossRefGoogle Scholar
  15. Grost, R. T., Hubert & W. A. Weschke, 1991. Description of brown trout redds in a mountain stream. Transaction of the Atlantic Fisheries Society 120: 582–588.CrossRefGoogle Scholar
  16. Günther, A., 1971. Die kritische mittlere Sohlschubspannung bei Geschiebemischungen unter Berücksichtigung der Deckschichtbildung und der turbulenzbedingten Schubspannungsschwankungen, Mitt. Nr. 3 der VAW der ETH Zürich.Google Scholar
  17. Habersack, H. & C. Hauer, 2004. Monitoring ökologisch orientierter Hochwasserschutzmaßnahmen an der Sulm/Stmk., Arbeitspakete Flussmorphologie und Hochwasserschutz. Studie im Auftrag der Steiermärkischen Landesregierung, Graz und des Bundesministerium für Land und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien. .Google Scholar
  18. Harby, A. & J. V. Arnekleiv, 1994. Biotope improvement analysis in the River Dallaa with the River System Simulator. In Proceedings of the first International Symposium on Habitat Hydraulics. Trondheim, Norway, 619–630.Google Scholar
  19. Hasler, A. D. & A. T. Scholz, 1983. Olfactory Imprinting and Homing in Salmon. Springer Verlag.Google Scholar
  20. Hauer, C., H. Habersack, S. Schmutz, G. Unfer, K. Maierhofer & I. Novak, 2004. The effects of morphodynamic processes on the habitat quality of the rheophilous cyprinid nase (Chondrostoma nasus) in a restored Austrian lowland river. Proceedings of the Fifth International Conference on Ecohydraulics - Aquatic Habitats, 798–802.Google Scholar
  21. Heggberget, T. G., L. P. Hansen & T. F. Naesje, 1988. Within-River spawning migration of Atlantic Salmon (Salmo salar). Canadian Journal of fisheries and Aquatic sciences 45: 1691–1698.CrossRefGoogle Scholar
  22. Hohensinner, S., H. Habersack, G. Zauner & M. Jungwirth, 2004. Reconstruction of the characteristics of a natural alluvial river-floodplain system and hydromorphological changes following human modifications: The Danube River (1812–1991). River Research and Applications 20: 25–41.CrossRefGoogle Scholar
  23. Holzer, G., A. Müller, A. Peter & M. Schneider, 2002. Fischereiliches Gutachten über die Aarebaggerung in Thun. Kastanienbaum, EAWAG.Google Scholar
  24. Hudson, P. F., 2002. Pool-riffle morphology in an actively migrating alluvial channel: the Lower Mississippi River. Physical Geography 23: 154–169.Google Scholar
  25. Huusko, A. & T. Yrjänä, 1996. Effects of instream enhancement structures on brown trout habitat availability in a channelized boreal river: a PHABSIM – approach. In Leclerc, M., et al. (eds), Ecohydraulics 2000, Proceedings of the Second IAHR International Symposium on Habitat Hydraulics. Quebec, Canada. Volume B, 619–630.Google Scholar
  26. Illies, J. & L. Botoseanu, 1963. Problemes et methodes de la classification et de la zonation ecologique des eaux courantes, considerees surtout du point de vue faunistique. Mitteilungen. Internationale Vereinigung für Theoretische und Angewandte Limnologie 12: 1–57.Google Scholar
  27. Jorde, K., 1999. Das Simulationsmodell CASIMIR als Hilfsmittel zur Festlegung ökologisch begründeter Mindestwasserregelung. Tagungsband Problemkreis Pflichtwasserabgabe, 21 – 23 Juni, Graz, Schriftreihe Euronatur.Google Scholar
  28. Kappesser, G. B., 2002. A Riffle Stability Index to evaluate sediment loading to streams. Journal of the American Water Resources Association 38: 1069–1081.Google Scholar
  29. Keckeis, H., 1991. Fortpflanzungsbiologie und ökologische Kennzeichnung von Laichgebieten der Nase (Chondrostoma nasus) in der Donau. Workshop Biologie und Gefährdung heimischer Kleinfischarten, Innsbruck.Google Scholar
  30. Küttel, S., A. Peter & A. Wuest, 2002. Temperaturpräferenzen und –limiten von Fischarten Schweizerischer Fließgewässer. Beitrag aus dem Rhone Revitalisierungsprojekt.Google Scholar
  31. Lelek, L. & M. Penaz, 1963. Spawning of Chondrostoma nasus in the Brumovka River. Folia Zoologica 12: 121–134.Google Scholar
  32. Lucas, M. C., T. J. Thom, A. Duncan & O. Slavic, 1998. Coarse fish migration; occurrence, causes and implications. R&D Technical Report W152, University of Durham.Google Scholar
  33. Mader, H., T. Steidl & R. Wimmer, 1996. Klimatologisch-hydrologische Typisierung der österreichischen Fließgewässer. Umweltbundesamt, Monographien, Wien.Google Scholar
  34. Maier, K., M. Turcsany, M. Krieg & C. Tinguely, 1992. Untersuchungen an einem Laichplatz der Nase (Chondrostroma nasus) im Unterlauf der Sense (Schweiz, Kt. Bern). DGL, erweiterte Zusammenfassung der Jahrestagung 1992, Band 1: 258–263.Google Scholar
  35. Maier, K., 1993. Erfassung und Katalogisierung der wichtigsten Laichgebiete der Nase (Chondostroma nasus) in den schweizerischen Rheinflüssen. BUWAL, Sektion Fischerei. Bern.Google Scholar
  36. Melcher, A., 1999. Biotische Habitatmodellierung im Zuge eines Gewässerbetreuungskonzeptes anhand der Lebensraumansprüche der Nase (Chondrostoma nasus). Abteilung für Hydrobiologie, BOKU Wien.Google Scholar
  37. Meyer -Peter, E. & P. Müller, 1949. Formulas for bed – load transport. International Association of Hydraulic Research, 2nd Meeting, Stockholm. .Google Scholar
  38. Milhouse, R. T., 1989. Physikal Habitat Simulation System Reference Manual - Vers 2′, Instream Flow Information Paper No. 26. U.S. Department of the Interior, Fish and Wildlife Service.Google Scholar
  39. Muhar, S., M. Kainz, M. Kaufmann & M. Schwarz, 1998. Ausweisung flusstypspezifisch erhaltener Fließgewässer in Österreich. BMLF, Wien.Google Scholar
  40. Müller, R., 1997. Vorlesungsskript Fischkunde in der Schweiz 1997/98.Google Scholar
  41. Nezu, I. & H. Nakagawa, 1989. Self forming mechanism of longitudinal sand rigdes and troughs in fluvial open channel flows. XXIII Congress. IAHR, Ottawa.Google Scholar
  42. Nujic, M., 1999. Praktischer Einsatz eines hochgenauen Verfahrens für die Berechnung von tiefengemittelten Strömungen. Mitteilungen des Institutes für Wasserwesen der Universität der Bundeswehr München, Nr. 64.Google Scholar
  43. Nujic, M., 2004. Ergänzungen zu HYDRO_AS−2D, Ein zweidimensionales Strömungsmodell für die wasserwirtschaftliche Praxis.Google Scholar
  44. Ottaway, E. M., P. A. Carling, A. Clare & N. A. Reader, 1981. Observations on the structure of brown trout, Salmo trutta Linnaeus, redds. Journal of Fish Biology 19: 593–607.CrossRefGoogle Scholar
  45. Otto, H., 1981. Auwälder im steirischen Mur und Raabgebiet im Rahmen der Erfassung Schützenswerter Biotope der Steiermark.- ed. Amt der Steiermärkischen Landesregierung, Graz, Austria maps. Floodplain biodiversity, vegetation classification, mapping, Mur River, Raab River, floodplain restoration.Google Scholar
  46. Parker, G. & A. J. Sutherland, 1990. Fluvial Armor. Journal of Hydraulic Research 28: 529–544.CrossRefGoogle Scholar
  47. Pasternack, G. B., C. L. Wang & J. E. Merz, 2004. Application of a 2D hydrodynamic model to design of reach-scale spawning gravel replenishment on the Mokelumne River, California. River Research and Applications 20: 205–225.CrossRefGoogle Scholar
  48. Petts, G. E., 1994. Impounded Rivers Perspectives for Ecological Management. John Wiley and Sons, New York.Google Scholar
  49. Pironneau, P., 1989. Finite Element Methods for Fluids. Masson, Paris.Google Scholar
  50. Pokorny, B., 1999. Untersuchungen zur Drift und Habitatauswahl der frühen Entwicklungsstadien der Nase Chondrostoma nasus an der Pielach. Diploma thesis. Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung für Hydrobiologie, Fischereiwirtschaft und Aquakultur Wien.Google Scholar
  51. Pretty, J. L., S. S. C. Harrison, D. J. Sheperd, C. Smith, A. G. Hildrew & R. D. Hey, 2003. River rehabilitation and fish populations: assessing the benefit of instream structures. Journal of Applied Ecology 40: 251–265.Google Scholar
  52. Quinn, T. P., 1993. A review of homing and straying of wild and hatchery produced salmon. Fisheries Research 18: 29–44.CrossRefGoogle Scholar
  53. Regional Government of Styria, 2001. Broschüre, Hochwasserschutz Sulm – Heimschuh.Google Scholar
  54. Rinchard, J. & P. Kestemont, 1996. Comparative study of reproductive biology in single- and multiple-spawner cyprinid fish. 1. Morphological and historical features. Journal of Fish Biology 49: 883–894.CrossRefGoogle Scholar
  55. Rubin, J. F., C. Glimsater & T. Jarvi, 2004. Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden). Fisheries Management and Ecology 11: 15–22.CrossRefGoogle Scholar
  56. Rubin, J. F., C. Glimsater & T. Jarvi, 2005. Spawning characteristics of the anadromous brown trout in a small Swedish stream. Journal of Fish Biology 66: 107–121.CrossRefGoogle Scholar
  57. Schmutz, S., A. Zitek, S. Zobl, M. Jungwirth, N. Knopf, E. Kraus, T. Bauer & T. Kaufmann, 2002. Integrated approach to the conservation and restoration of Danube salmon, Hucho hucho, populations in Austria. In Collares-Pereira, M. J., I. G. Cowx & M. M. Coelho (eds). Freshwater Fish Conservation – Options for the Future. Fishing News Book, Oxford, 157–171.Google Scholar
  58. Schneider, M., 2001. Habitat und Abflussmodellierung mit unscharfen Berechnungsansätzen. Mitteilungen des Instituts für Wasserbau, Universität Stuttgart, Heft 108.Google Scholar
  59. Sear, D. A., 1996. Sediment transport processes in pool-riffle sequences. Earth Surface and Landforms 21: 241–262.CrossRefGoogle Scholar
  60. Sear, D. A., D. Malcolm, D. Newson & C. R. Thorne, 2003. Guidebook of Applied Fluvial Geomorphology. R&D Technical Report FD1914.Google Scholar
  61. Shuler, S. W. & R. P. Nehring, 1993. Using the physical habitat simulation model to evaluate a stream habitat enhancement project. River 4: 175–193.Google Scholar
  62. Söhngen, B., 1988. Flussmorphologie und Stabilität des Gewässerbettes. Verkehrswasserbauliche Aussprachetage der BAW, Karlsruhe.Google Scholar
  63. Spindler, T., 1988. Ökologie der Brutfische in der Donau bei Wien. PhD, University of Vienna.Google Scholar
  64. Stein, H., 1992. Fischlaichplätze an Fließgewässern, Kriterien zur Untersuchung, Identifizierung und Bewertung im Rahmen von Beweissicherungen. Seminar für Sachverständige der Binnenfischerei. Bonn.Google Scholar
  65. Tsujimoto, R., 1989. Longitudinal Stripes of Alternate Sorting due to Cellular Secondary Currents, XXIII. Congress. IAHR, Ottawa,.Google Scholar
  66. Walker, D. R., R. G. Millar & R. W. Newburry, 2004. Energy profiles across constructed riffles. Journal of Hydraulic Engineering – ASCE 130: 199–207.CrossRefGoogle Scholar
  67. Wiesner, C., M. Jungwirth, S. Schmutz, G. Unfer & A. Zitek, 2006. Importance of Connectivity in the Danube River Catchment. In DWA-Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Internationales DWA-Symposium zur Wasserwirtschaft – Durchgängigkeit von Gewässern für die aquatische Fauna, DWA-Themen, 142–150.Google Scholar
  68. Wilkinson, S. N., R. J. Keller & I. D. Rutherford, 2004. Phase-shifts in shear stress as an explanation for the maintenance of pool-riffle sequences. Earth Surface Processes and Landforms 29: 737–753.CrossRefGoogle Scholar
  69. Wolman, M. G., 1954. A method of sampling coarse river-bed material: transactions of the American Geophysical Union. U.S. Geological Survey Ask USGS, 951–956.Google Scholar
  70. Wootton, J. R., 1992. The Ecology of Teleost Fishes. Chapman & Hall, London.Google Scholar
  71. Zeh, M., & Donni W., 1994. Restoration of spawning grounds for trout and grayling in the River High-Rhine. Aquatic Sciences 56: 59–69.CrossRefGoogle Scholar
  72. Zitek, A., G. Unfer, C. Wiesner, D. Fleischanderl & S. Muhar, 2004. Monitoring ökologisch orientierter Hochwasserschutzmaßnahmen. Studie im Auftrag der Steiermärkischen Landesregierung, Graz und des BM für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Christoph Hauer
    • 1
    • 2
  • Günther Unfer
    • 1
    • 3
  • Stefan Schmutz
    • 1
    • 3
  • Helmut Habersack
    • 1
    • 2
  1. 1.Department of Water, Atmosphere and EnvironmentBOKU – University of Natural Resources & Applied Life Sciences ViennaViennaAustria
  2. 2.Institute of Water Management, Hydrology and Hydraulic EngineeringViennaAustria
  3. 3.Institute of Hydrobiology and Aquatic Ecosystem ManagementWienAustria

Personalised recommendations