, Volume 575, Issue 1, pp 373–388 | Cite as

Short-time-scale variability of near-bottom seston composition during spring in a warm temperate sea

  • Sergio Rossi
  • Josep-Maria Gili
Primary Research Paper


In this study, environmental (temperature, wave height, river run-off, and currents) and biological (Chlorophyll a (Chl a), total particulate carbon (TPC), particulate organic carbon (POC), particulate organic nitrogen (PON), proteins, and carbohydrates) features were analysed in Mediterranean coastal waters using a short-time-scale approach. In order to explain shifts in the biomass variability within the spring (a period of intense production in the Mediterranean), samplings were made in March and June (considered extremes in the environmental features of this season). The near-bottom water layers (0.2–0.5 m above the bottom) were sampled each 4 h (March) and 6 h (June) to understand the short-time-scale variation of the plankton–benthos relationship in this time of the year. While Chl a and Carbohydrate concentrations were higher in March, POC and Protein concentrations were higher in June. Higher Variation Indices were found in June with respect to March in almost all the analysed parameters (environmental and biochemical). This point is reflected in the biochemical parameters, which were more related to each other in June than in March. Horizontal Secchi Disk (HSD) readings (water transparency, considered a good descriptor of particle abundance) were linked to environmental factors (i.e. wave height and river run-off). The activity of five of the six passive suspension feeders observed in this time of the year was significant correlated with such HSD readings only in June. Our findings suggest that the variable patterns of environmental factors in spring (especially in June), increase turbulence near the bottom, and alter seston composition and perhaps biological production, which gives more available food for benthic communities in June than in March. We hypothesize that higher biomass and variability in the concentration of biochemical parameters in the near-bottom water layers, together with frequent pulses in the environmental factors in spring may be one of the key factors in explaining the high production levels of benthic communities at this time of the year.


Near-bottom seston Biochemical composition Environmental variability Secchi disk Benthos activity Spring 



The authors are widely grateful to Dr. Elisa Berdalet for early comments on this manuscript. We also thank S. Solorzano and E. Reyes for their help with quantification of some seston parameters. The authors are especially grateful to Josep Pasqual for environmental data collection and work-up and to V. Alvá, R. Coma, D. Diaz, B. Hereu, M. Marí, M. Ribes, E. Pola, N. Teixidó, and M. Zabala for field assistance. TPC, POC, and PON analyses were provided by the Scientific Technician Services (University of Barcelona), with the assistance of I. Casals and P. Fernandez. Support for this study was provided by a research training grant from the Spanish Ministry of Education and Science to S.R., under Projects DGICYT 1995–1998, PB94–0014-C02–01 and DGICYT 1999–2000, PB98-0496-C03-01, and by the MAST-III-ELOISE European Union METRO MED Project.


  1. Alongi, D. M., 1998. Coastal Ecosystem Processes. CRC Press, Boca Raton.Google Scholar
  2. Arin, L., X. A. G. Morán & M. Estrada, 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): short term variability related to mesoscale hydrodynamics. Journal of Plankton Research 24: 1019–1033.CrossRefGoogle Scholar
  3. Atkinson, M. J. & S. V. Smith, 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28: 568–574.Google Scholar
  4. Ballesteros, E., 1989. Production of seaweeds in Northwestern Mediterranean marine communities: its relation with environmental factors. Scientia Marina 53(2–3): 357–364.Google Scholar
  5. Boero, F. & E. Fresi, 1986. Zonation and evolution of a rocky bottom hydroid community. P.S.Z.N.I.: Marine Ecology 7: 123–150.Google Scholar
  6. Carter, R. W. G., 1993. Coastal Environments. An introduction to the physical, ecological and cultural systems of coastlines. Academic Press, London.Google Scholar
  7. Cebrián, J., C. M. Duarte & J. Pascual, 1996. Marine climate on the Costa Brava (northwestern Mediterranean) littoral. Publicaciones Especiales del Instituto Español de Oceanografía 22: 9–21.Google Scholar
  8. Cloern, J. E., 1982. Does the benthos control phytoplankton biomass in south San Francisco Bay? Marine Ecology Progress Series 9: 191–202.Google Scholar
  9. Coma, R., J. M. Gili, M. Zabala & T. Riera, 1994. Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Marine Ecology Progress Series 115: 157–270.Google Scholar
  10. Coma, R., M. Ribes, J. M. Gili & M. Zabala, 2000. Seasonality in coastal benthic ecosystems. Trends in Ecology and Evolution 15: 448–453.PubMedCrossRefGoogle Scholar
  11. Coma, R., M. Ribes, J. M. Gili & M. Zabala, 2002. Seasonal variation of in situ respiration rate in temperate benthic suspension feeders. Limnology and Oceanography 47: 324–331.CrossRefGoogle Scholar
  12. Cullen, J.J., 1985. Diel vertical migration by dinoflagellates: roles of carbohydrate metabolism and behavioral flexibility. In Rankin, M. A. (ed.), Migration: Mechanisms and Adaptive Significance. Continental & Marine Science 27(Suppl), 135–152.Google Scholar
  13. Dai, C. F. & M. C. Lin, 1993. The effects of flow on feeding of three gorgonians from southern Taiwan. Journal of Experimental Marine Biology and Ecology 173: 57–69.CrossRefGoogle Scholar
  14. Danovaro, R., M. Fabiano & N. Della Croce, (1993) Labile organic matter and microbial biomasses in deep-sea sediments (Eastern Mediterranean sea). Deep Sea Research 40: 953–965.CrossRefGoogle Scholar
  15. Dauvin, J. C. & C. Vallet, 2006. The near-bottom layer as an ecological boundary in marine ecosystems: diversity, taxonomic composition and community definitions. Hydrobiologia 555: 49–58.CrossRefGoogle Scholar
  16. Denman, K. L. & T. M. Powell, 1984. Effects of physical processes on planktonic ecosystems in the coastal ocean. Oceanography and Marine Biology Annual Review 22: 125–168.Google Scholar
  17. Doval, M. D., F. F. Pérez & E. Berdalet, 1999. Dissolved and particulate organic carbon and nitrogen in the Northwestern Mediterranean. Deep-Sea Research Part I 46: 511–527.CrossRefGoogle Scholar
  18. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  19. Estrada, M., 1996. Primary production in the northwestern Mediterranean. Scientia Marina 60(2): 55–64.Google Scholar
  20. Estrada, M. & E. Berdalet, 1997. Phytoplankton in a turbulent world. Scientia Marina 61(1): 125–140.Google Scholar
  21. Fabiano, M., M. Zavatarelli & S. Palmero, 1984. Observations sur la metière organique particulaire (protéines, glucides, lipides, chlorophylle) en mer ligure. Téthys 11(2): 133–140.Google Scholar
  22. Fegley, S. R., B. A. MacDonald & T. R. Jacobsen, 1992. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuarine, Coastal and Shelf Science 34: 393–412.CrossRefGoogle Scholar
  23. Flos, J., 1985. The driving machine. In Margalef, R. (ed.), Western Mediterranean Pergamon Press, Oxford, 62–101.Google Scholar
  24. Garrabou, J., 1999. Life-history traits of Alcyonium acaule and Parazoanthus axinellae (Cnidaria, Anthozoa), with emphasis on growth. Marine Ecology Progress Series 178: 193–204.Google Scholar
  25. Garrabou, J., E. Ballesteros & M. Zabala, 2002. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuarine, Coastal and Shelf Science 55: 493–508.CrossRefGoogle Scholar
  26. Gili, J. M. & J. Ros, 1985. Study and cartography of the benthic communities of the Medes Islands (NE Spain). P.S.Z.N.I.: Marine Ecology 6: 219–238.CrossRefGoogle Scholar
  27. Gili, J. M. & R. Coma, 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology and Evolution 13: 316–321.CrossRefGoogle Scholar
  28. Graf, G., 1992. Benthic–pelagic coupling: a benthic view. Oceanography and Marine Biology Annual Review 30: 149–190.Google Scholar
  29. Grémare, A., J. M. Amouroux, F. Charles, A. Dinet, C. Riaux-Gobin, J. Baudart, L. Medernach, J. Y Bodiou, G. Vétion, J. C. Colomines & P. Albert, 1997. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a 2-year study. Marine Ecology. Progress Series 150: 195–206.Google Scholar
  30. Grémare, A., J. M. Amouroux, G. Cauwet, F. Charles, C. Courties, F. DeBovée, A. Dinet, J. L. Devenon, X. Durrieu de Madron, B. Ferré, P. Fraunié, F. Joux, F. Lantoine, P. Lebaron, J. J. Naudin, M. Pujo-Pay & L. Zudaire, 2003. The effects of a strong winter storm on physical and biological variables at a shelf site in the Mediterranean. Oceanologica Acta 26: 407–419.CrossRefGoogle Scholar
  31. Innes, J. L., 1998. Measuring environmental change. In Peterson, D. L. & V. T. Parker (eds), Ecological Scale. Theory and Applications. Columbia University Press, New York, 429–457.Google Scholar
  32. Kiørboe, T., 2001. Formation and fate of marine snow: small-scale processes with large-scale implications. Scientia Marina 65(Supp 2): 57–71.Google Scholar
  33. Lowry, O. H., N.J.Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMedGoogle Scholar
  34. Mann, K. H., 2000. Ecology of Coastal Waters. With Implications for Management. Blackwell Science, Malden.Google Scholar
  35. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–508.Google Scholar
  36. Margalef, R., 1991. Constructividad frente a limitaciones. In Teoría de los Sistemas Ecológicos. Publicacions Universitat de Barcelona: 105–161.Google Scholar
  37. Margalef, R., 1997. Turbulence and marine life. Scientia Marina 61(1): 109–123.Google Scholar
  38. Marrasé, C., E. Lin Lim & D. A. Caron, 1992. Seasonal and daily changes in bacterivory in a coastal plankton community. Marine Ecology Progress Series 82: 281–289.Google Scholar
  39. Medernach, L., E. Jordana, A. Grémare, C. Nozais, F. Charles & J. M. Amouroux, 2000. Population dynamics, secondary production and calcification in a Mediterranean population of Ditrupa arietina (Annelida: Polychaeta). Marine Ecology Progress Series 199: 171–184.Google Scholar
  40. Moore, J. K. & T. A. Villareal, 1996. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Marine Ecology Progress Series 132: 203–212.Google Scholar
  41. Nogueira, E., F. Ibáñez & F. G. Figueiras, 2000. Effect of meteorological and hydrographic disturbances on the microplankton community structure in the Ría de Vigo (NW Spain). Marine Ecology Progress Series 203: 23–45.Google Scholar
  42. Parsons, T. R., Y. Maita & C. M. Lalli, 1985. Fluorometric determination of Chlorophylls. In A Manual of Chemical and Biological Methods for Sea Water Analysis. Pergamon Press, Oxford, 201–203.Google Scholar
  43. Pasqual, J., 1999. Necessitat de coneixer el temps. In Papers del Montgrí. Estudis Científics ales Illes Medes. Museu del Montgrí i del Baix Ter, Girona (in catalan).Google Scholar
  44. Pasqual, J. & J. Flos, 1984. Meteorología i oceanografía. In Els Sistemes naturals de les Illes Medes. Ros J., I. Olivella & J. M. Gili (eds). Institut d’Estudis Catalans: 75–114 (in catalan).Google Scholar
  45. Pascual, J., L. Lloret, J. Salat & M. Zabala, 1995. Projecte de determinació de la circulació de les aigües de la Reserva Marina de les Illes Medes. Informe técnic per la Direcció General de Pesca Marítima, Generalitat de Catalunya (in catalan).Google Scholar
  46. Preisendorfer, R. W., 1986. Secchi disk science: visual optics of natural waters. Limnology and Oceanography 31: 909–927.CrossRefGoogle Scholar
  47. Puig, P., A. Palanques & J. Guillén, 2001. Near-bottom suspended sediment variability caused by storms and near-inertial waves on the Ebro mid-continental shelf (NW Mediterranean). Marine Geology 178: 81–93.Google Scholar
  48. Pusceddu, A., G. Sarà, A. Armeni, A. Mazzola & M. Fabiano, 1999. Seasonal and spatial changes in sediment organic matter composition of a semi-enclosed marine system (W-Mediterranean Sea). Hydrobiologia 397: 59–70.Google Scholar
  49. Pusceddu, A., A. Dell’Anno & M. Fabiano, 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biology 23: 124–132.CrossRefGoogle Scholar
  50. Raimbault, P., I. Taupier-Letage & M. Rodier, 1988. Vertical size distribution of phytoplankton in the western Mediterranean Sea during early summer. Marine Ecology Progress Series 45: 153–158.Google Scholar
  51. Reynolds, C. S., 1994. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology. Scale, Pattern and Process. Blackwell Science, Oxford, 141–187.Google Scholar
  52. Ribera d’Alcalá, M., F. Conversano, F. Corato, P. Licandro, O. Mangoni, D. Marino, M. G. Mazzocchi, M. Modigh, M. Montresor, M. Nardella, V. Saggiorno, D. Sarno & A. Zingone, 2004. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Scientia Marina 68(1): 65–83.Google Scholar
  53. Ribes, M., R. Coma & J. M. Gili, 1999. Seasonal variations of particulate organic carbon, dissolved organic carbon and the contribution of the microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the North-western Mediterranean Sea. Journal of Plankton Research 21: 1077–1100.CrossRefGoogle Scholar
  54. Rossi, S., 2002. Environmental factors affecting the trophic ecology of benthic suspension feeders. Ph.D. thesis, University of Barcelona.Google Scholar
  55. Rossi, S. & J. M. Gili, 2005. Composition and temporal variation of the near-bottom seston in a Mediterranean coastal area. Estuarine Coastal and Shelf Science 65: 385–395.CrossRefGoogle Scholar
  56. Rossi, S., A. Grémare, J. M. Gili, J. M. Amouroux, E. Jordana & G. Vétion, 2003. Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Estuarine Coastal and Shelf Science 58: 423–434.CrossRefGoogle Scholar
  57. Rossi, S., M. Ribes, R. Coma & J. M. Gili, 2004. Temporal variability in zooplankton prey capture rate of the soft bottom passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Marine Biology 144: 89–99.CrossRefGoogle Scholar
  58. Rossi, S., J. M. Gili, R. Coma, C. Linares, A. Gori & N. Vert, 2006. Seasonal cycles of protein, carbohydrate and lipid concentrations in Paramuricea clavata: (anthozoa, octocorallia): evidences for summer–autumn feeding constraints. Marine Biology 149: 643–651.CrossRefGoogle Scholar
  59. Sardá, R., S. Pinedo & D. Martín, 1999. Seasonal dynamics of macroinfaunal key species inhabiting shallow soft-bottoms in the bay of Blanes (NW Mediterranean). Acta Ecologica 20: 315–326.CrossRefGoogle Scholar
  60. Selmer, J. S., C. Ferrier-Pagès, C. Cellario & F. Rassoulzadegan, 1993. New and regenerated production in relation to the microbial loop in the NW Mediterranean Sea. Marine Ecology Progress Series 100: 71–83.Google Scholar
  61. Steele, J. H., 1978. Some comments in plankton patches. In Steele, H. (ed.), Spatial Pattern in Plankton Communities. Plenum Press, New York: 1–20.Google Scholar
  62. Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil Permanent International puor l’Exploration de la Mer 18: 287–295.Google Scholar
  63. Taylor, C. D. & B. L. Howes, 1994. Effect of sampling frequency on measurements of seasonal primary production and oxygen status in near-shore coastal ecosystems. Marine Ecology Progress Series 108: 193–203.Google Scholar
  64. Thomsen, L., 1999. Processes in benthic boundary layer at continental margins and their implication for the benthic carbon cycle. Journal of Sea Research 41: 73–86.CrossRefGoogle Scholar
  65. Thomsen, L. & T. C. E. van Weering, 1998. Spatial and temporal variability of particulate matter in the benthic boundary layer at the N.W. European Continental Margin (Goban Spur). Progress in Oceanography 42: 61–76.CrossRefGoogle Scholar
  66. Tilstone, G. H., B. M. Mínguez, F. G. Figueiras & E. G. Fermín, 2000. Diatom dynamics in a coastal ecosystem affected by upwelling: coupling between species succession, circulation and biogeochemical processes. Marine Ecology Progress Series 205: 23–41.Google Scholar
  67. Tsounis G., S. Rossi, J. Laudien, L. Bramanti, N. Fernández, J. M. Gili & W. Arntz, 2006. Seasonal variation in the prey capture rate of the Mediterranean red coral (Corallium rubrum L.). Marine Biology 149: 313–325.CrossRefGoogle Scholar
  68. Vaqué, D., H. A. Blough & C. M. Duarte, 1997. Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). Aquatic Microbial Ecology 12: 71–83.Google Scholar
  69. Wainright, S. C., 1990. Sediment-to-water of particulate material and microbes by resuspension and their contribution to the planktonic food web. Marine Ecology Progress Series 62: 271–281.Google Scholar
  70. Wildish, D. & D. Kristmanson, 1997. Benthic suspension feeders and flow. Cambridge University Press, Cambridge.Google Scholar
  71. Zar J. H., (1996) Biostatistical Analysis, 3rd edn. Prentice Hall International Editions, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Marine Biology DepartmentInstitut de Ciències del Mar (CSIC)BarcelonaSpain

Personalised recommendations