Advertisement

Hydrobiologia

, 575:117 | Cite as

On the influence of substrate morphology and surface area on phytofauna

  • Salvador Becerra-Muñoz
  • Harold L. SchrammJr.
Primary Research Paper

Abstract

The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures.

Keywords

Artificial substrates Epiphytic invertebrates Phytofauna Playa lakes 

Notes

Acknowledgements

We thank Martha Bautista-Rodríguez for building artificial substrates, and Greg A. Conley, John A. Dennis, Andrew A. Radomsky, Patrick A. Chubb, Thomas L. Freeman, Tamrah L. Craft and Menzdehng Wen for assistance with fieldwork. Certainly our appreciation goes to Mr. Kent Irons and Mr. Butch Merritt for allowing us to conduct this experiment in their playa lakes. David B. Wester provided statistical guidance. Funding for this study was provided by Texas Tech University and the Mexican National Polytechnic Institute.

References

  1. American Public Health Association, 1985. Standard Methods for the Examination of Water and Wastewater. 16th edn. American Public Health Association, Washington, DC.Google Scholar
  2. Atil, H. & Y. Unver, 2001. Multiple comparisons. Online Journal of Biological Sciences 1: 723–727.Google Scholar
  3. Atilla, N., J. W. Fleeger & C. M. Finelli, 2005. Effects of habitat complexity and hydrodynamics on the abundance and diversity of small invertebrates colonizing artificial substrates. Journal of Marine Research 63: 1151–1172.CrossRefGoogle Scholar
  4. Biochino, A. A. & G. I. Biochino, 1980. Quantitative estimation of phytophilous invertebrates. Hydrobiologia 15: 74–76.Google Scholar
  5. Bownik, L. J., 1970. The periphyton of the submerged macrophytes of Mikolajskie Lake. Ekologia Polska 18: 503–520.Google Scholar
  6. Brouha, P. & C. E. Von Geldern, Jr., 1979. Habitat manipulation for centrarchid production in western reservoirs. In Johnson, D. L. R. A. Stein (eds), Response of fish to habitat structure in standing waters. American Fisheries Society, Bethesda, MD: 11–17.Google Scholar
  7. Brown, C. L., T. P. Poe, J. R. French III & D. W. Schloesser, 1988. Relationships of phytomacrofauna to surface area in naturally occurring macrophyte stands. Journal of the North American Benthological Society 7: 129–39.CrossRefGoogle Scholar
  8. Cheruvelil, K. S., P. A. Soranno, J. D. Madsen & M. J. Roberson, 2000. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261–277.CrossRefGoogle Scholar
  9. Chilton, E. W. II, 1990. Macroinvertebrate communities associated with three aquatic macrophytes (Ceratophyllum demersum, Myriophyllum spicatum and Vallisneria americana) in Lake Onalaska, Wisconsin. Journal of Freshwater Ecology 5: 455–466.Google Scholar
  10. Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation. Experiments with phytal meiofauna from New Zealand rocky intertidal. Ecology 64: 1599-1609.CrossRefGoogle Scholar
  11. Cyr, H. & J. A. Downing, 1988a. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Canadian Journal of Fisheries and Aquatic Sciences 45: 976-984.CrossRefGoogle Scholar
  12. Cyr, H. & J. A. Downing, 1988b. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwater Biology 20: 365-374.CrossRefGoogle Scholar
  13. Downing, J. A. & H. Cyr, 1985. Quantitative estimation of epiphytic invertebrate populations. Canadian Journal of Fisheries and Aquatic Sciences 42: 1570–1579.CrossRefGoogle Scholar
  14. Drake, C. M., 1983. Spatial distribution of chironomid larvae (Diptera) on leaves of the bulrush in a chalk stream. Journal of Animal Ecology 52: 421–437.CrossRefGoogle Scholar
  15. Gaevskaya, N. S., 1969. The role of higher aquatic plants in the nutrition of the animals of fresh-water basins. In Mann. K. H. (ed.). National Lending Library for Science and Technology, Vols I–III. Yorkshire, England.Google Scholar
  16. Gerking, S. D., 1957. A method of sampling the littoral macrofauna and its application. Ecology 38: 219-226.CrossRefGoogle Scholar
  17. Hansen, K. L., E. G. Ruby & R. L. Thompson, 1971. Trophic relationships in the water hyacinth community. Quarterly Journal of Florida Academy of Sciences 34: 107–113.Google Scholar
  18. Harrod, J. J., 1964. The distribution of invertebrates on submerged aquatic plants in a chalk stream. Journal of Animal Ecology 33: 335-348.CrossRefGoogle Scholar
  19. Jeffries, M., 1993. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.CrossRefGoogle Scholar
  20. Junk, W. J., 1973. Investigations on the ecology and production-biology of the floating meadows (Paspalo-Echinochloetum) on the middle Amazon. Part II. The aquatic fauna in the root zone of floating vegetation. Amazoniana 4: 9-102.Google Scholar
  21. Junk, W. J., 1977. The invertebrate fauna of the floating vegetation of Bung Borapet, a reservoir in central Thailand. Hydrobiologia 53: 229–238.CrossRefGoogle Scholar
  22. Kangas, P., 1978. On the quantity of meiofauna among the epiphytes of Fucus vesiculosus in the Asko area, northern Baltic Sea. Contributions from Asko Laboratory. University of Stockholm, Sweden 24: 1–32.Google Scholar
  23. Kirk, R. E., 1995. Experimental design: Procedures for the behavioral sciences. 3rd edn. Brooks-Cole Publishing Company, Pacific Grove, CA.Google Scholar
  24. Krecker, F. H., 1939. A comparative study of the animal population of certain submerged aquatic plants. Ecology 20: 553-562.CrossRefGoogle Scholar
  25. Krull, J. N., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. Journal of Wildlife Management 34: 707–718.Google Scholar
  26. Kuflikowski, T., 1986. Development and structure of the Goczalkowice ecosystem. XIII. Plant-dwelling fauna. Ekologia Polska 34: 473–489.Google Scholar
  27. Lalonde, S. & J. A. Downing, 1992. Phytofauna of eleven macrophyte beds of differing trophic status, depth and composition. Canadian Journal of Fisheries and Aquatic Sciences 49: 992–1000.Google Scholar
  28. Linhart, J., V. Uvíra, M. Rulík & K. Rulíkova, 1998. A study of the composition of phytomacrofauna in Batrachium aquatile vegetation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium Biologica 36: 39–60.Google Scholar
  29. Marcus, J. H., D. W. Sutcliffe & L. G. Willoughby, 1978. Feeding and growth of Asellus aquaticus (Isopoda) on food items from the littoral of Windermere, including green leaves of Elodea canadensis. Freshwater Biology 8: 505–519.CrossRefGoogle Scholar
  30. Merritt, R. W., K. W. Cummins, M. B. Berg, J. A. Novak, M. J. Higgins, K. J. Wessel & J. L. Lessard, 2002. Development and application of a macroinvertebrate functional groups approach in the bioassessment of remnant oxbows in the Caloosahatchee River, southwest Florida. Journal of the North American Benthological Society 21: 290–310.CrossRefGoogle Scholar
  31. Mrachek, R. J., 1966. Macroscopic invertebrates on the higher aquatic plants at Clear Lake, Iowa. Iowa Academy of Science 73: 168-177.Google Scholar
  32. Ohtaka, A. & H. Morino, 1986. Seasonal changes in the epiphytic animals on the Potamogeton malaianus in Lake Kita-Ura, with special reference to oligochaetes. Japanese Journal of Limnology Rikusuitzatsu 47: 63–75.Google Scholar
  33. Pardue, W. J. & D. J Webb, 1985. A comparison of aquatic macroinvertebrates occurring in association with Eurasian watermilfoil (Myriophyllum spicatum L.) with those found in the open littoral zone. Journal of Freshwater Ecology 3: 69–79.Google Scholar
  34. Pieczynski, E., 1977. Numbers and biomass of the littoral fauna in Mikolajskie Lake and in other Masurian lakes. Ekologia Polska 25: 45–57.Google Scholar
  35. Robertson, A. I. & J. S. Lucas, 1983. Food choice, feeding rates and the turnover of macrophyte biomass by a surf zone inhabiting amphipod. Journal of Experimental Marine Biology 72: 99–124.CrossRefGoogle Scholar
  36. Roca, J. R. & D. L. Danielopol, 1991. Exploration of interstitial habitats by the phytophilous ostracod Cypridopsis vidua (O.F. Müller): Experimental evidence. Annales de Limnologie 27: 243–252.CrossRefGoogle Scholar
  37. Rooke, J. B., 1984. The invertebrate fauna of four macrophytes in a lotic system. Freshwater Biology 14: 507-513.CrossRefGoogle Scholar
  38. Rooke, J. B., 1986a. Macroinvertebrates associated with macrophytes and plastic imitations in the Eramosa River, Ontario, Canada. Archiv für Hidrobiologie 106: 307-325.Google Scholar
  39. Rooke, J. B., 1986b. Seasonal aspects of the invertebrate fauna of three species of plants and rock surfaces in a small stream. Hydrobiologia 134: 81-87.CrossRefGoogle Scholar
  40. SAS Institute, 1990. SAS/STAT User’s Guide. Version 6, 4th Edn. SAS Institute, Cary, NC.Google Scholar
  41. Schramm, H. L. Jr., K. J. Jirka & M. V. Hoyer, 1987. Epiphytic macroinvertebrates on dominant macrophytes in two central Florida lakes. Transactions of the American Fisheries Society 118: 416–426.CrossRefGoogle Scholar
  42. Schramm, H. L. Jr. & K. J. Jirka, 1989. Epiphytic macroinvertebrates as a food resource for bluegills in Florida lakes. Transactions of the American Fisheries Society 118: 416-426.CrossRefGoogle Scholar
  43. Smock, L. A. & D. L. Stoneburner, 1980. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos 35: 397–403.CrossRefGoogle Scholar
  44. Smock, L. A. & K. L. Harlowe, 1983. Utilization and processing of freshwater wetland macrophytes by the detritivore Asellus forbesi. Ecology 64: 1556–1565.CrossRefGoogle Scholar
  45. Soszka, G. J., 1975a. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologia Polska 23: 393–415.Google Scholar
  46. Soszka, G. J., 1975b. The invertebrates on submerged macrophytes in three Masurian lakes. Ekologia Polska 23: 371–391.Google Scholar
  47. Steel, R. G. D., Torrie, J. H. & D. A. Dickey, 1997. Principles and Procedures of Statistics. A Biometrical Approach. 3rd edn. McGraw-Hill Publishing, New York.Google Scholar
  48. Taniguchi, H., Nakano, S. & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.CrossRefGoogle Scholar
  49. Taniguchi, H. & M. Tokeshi, 2004. Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.CrossRefGoogle Scholar
  50. Tokeshi, M., 1986a. Population dynamics, life histories and species richness in an epiphytic chironomid community. Freshwater Biology 16: 431–441.CrossRefGoogle Scholar
  51. Tokeshi, M., 1986b. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology 55: 491–506.CrossRefGoogle Scholar
  52. Tokeshi, M. & L. C. V. Pinder, 1986. Dispersion of epiphytic chironomid larvae and the probability of random colonization. Internationale Revue der gesamten Hydrobiologie 71: 613–620.Google Scholar
  53. Trivinho-Strixino, S., L. C. S. Correia & K. Sonoda, 2000. Phytophilous chironomid (Diptera) and other macroinvertebrates in the ox-bow Infernão Lake (Jatai Ecological Station, Luiz Antonio SP, Brazil). Revista Brasileira de Biologia 60: 527–535.PubMedCrossRefGoogle Scholar
  54. Urban, E., 1975. The mining fauna of four macrophyte species in Mikolajskie Lake. Ekologia Polska 23: 417–435.Google Scholar
  55. Winer, B. J., D. R. Brown & K. M. Michels, 1991. Statistical principles in experimental design. 3rd edn. McGraw-Hill Book Company, New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Salvador Becerra-Muñoz
    • 1
    • 2
  • Harold L. SchrammJr.
    • 1
    • 3
  1. 1.Department of Range, Fisheries and Wildlife ManagementTexas Tech UniversityLubbockUSA
  2. 2.PG&E, Environmental ServicesSan RamonUSA
  3. 3.U.S. Geological SurveyMississippi Cooperative Fish and Wildlife Research UnitMississippi StateUSA

Personalised recommendations