Skip to main content
Log in

Nutrient limitation in Crater Lake, Oregon

  • Crater Lake, Oregon
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Experiments were carried out to determine what nutrient (or nutrients) was primarily responsible for limiting phytoplankton productivity in ultraoligotrophic Crater Lake. The experiments included in situ and laboratory nutrient addition bioassays utilizing the natural phytoplankton community, Selenastrum capricornutum bottle assays, photosynthetic responses, photosynthetic carbon metabolism, and response of dark uptake of 14CO2 with the addition of NH +4 . The results suggested that a trace metal(s) or its availability was the primary factor limiting the epilimnetic phytoplankton productivity. Nitrogen was extremely low, and quickly became limiting with the addition of trace metals and a chelator. Iron is the most likely candidate as the limiting nutrient. Trace metals and nitrogen are also both important in limiting phytoplankton at 100 m, a depth where biologically mediated turnover of nutrients seems to be more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford, G. R., F. L. Bair & V. Hunsaker, 1968. Trace and major element content of 170 High Sierra lakes in California. Limnology and Oceanography 13: 526–530.

    Google Scholar 

  • Bruland, K. W., J. R. Donat & D. A. Hutchins, 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography 36: 1555–1577.

    CAS  Google Scholar 

  • Buktenica, M. W. & G. L. Larson, 1996. Ecology of kokanee salmon and rainbow trout in Crater Lake, Oregon. Lake and Reservoir Management 12: 298–310.

    Google Scholar 

  • Burnison, B. K., 1980. Modified dimethyl sulfoxide (DMSO) for chlorophyll analysis of phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 37: 729–733.

    Article  CAS  Google Scholar 

  • Cavender-Bares, K. K., E. L. Mann, S. W. Chisholm, M. E. Ondrusek & R. B. Bidigare, 1999. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnology and Oceanography 44: 237–246.

    CAS  Google Scholar 

  • Collier, R., J. Dymond, J. McManus & J. Lupton, 1990. Chemical and physical properties of the water column at Crater Lake, Oregon. In Drake, E. G. Larson, J. Dymond & R. Collier (eds), Crater Lake, an Ecosystem Study. Pacific Division of the American Association for the Advancement of Science, 69–79.

  • Dymond, J., R. Collier, J. McManus & G. L. Larson, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: Implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.

    CAS  Google Scholar 

  • Goldman, C. R., 1972. The role of minor nutrients in limiting the productivity of aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and Eutrophication: The Limiting-Nutrient Controversy. Special Symposium, American Society of Limnology and Oceanography Vol. 1: 21–33.

  • Goldman, C. R., 1998. Four decades of change in two subalpine lakes. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 7–26.

    Google Scholar 

  • Groeger, A. W. & B. L. Kimmel, 1988. Photosynthetic carbon metabolism in a nitrogen-limited reservoir. Canadian Journal of Fisheries and Aquatic Sciences 45: 720–730.

    Article  CAS  Google Scholar 

  • Groeger, A. W. & B. L. Kimmel, 1989. Relationship between photosynthetic and respiratory carbon metabolism in freshwater phytoplankton. Hydrobiologia 173: 107–117.

    Article  CAS  Google Scholar 

  • Groeger, A. W. & T. E. Tietjen, 1993. Physiological responses of nutrient-limited phytoplankton to nutrient addition. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 370–372.

    CAS  Google Scholar 

  • Huntsman, S. A. & W. G. Sunda, 1980. The role of trace metals in regulating phytoplankton growth. In Morris I. (ed) The physiological ecology of phytoplankton. University of California Press, Berkeley, 285–328.

    Google Scholar 

  • Hutchinson, G. E., 1957. Treatise on limnology, 1. Wiley & Sons, New York.

    Google Scholar 

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Landers, D. H., J. M. Eilers, D. F. Braake, W. S. Overton, P. E. Kellar, M. E. Silverstein, R. D. Sconbrod, R. E. Crowe, R. A. Linthurst, J. M. Omernik, S. A. Teague, & E. P. Meier, 1987. Characteristics of Lakes in the Western United States, Vol. 1. EPA/600/3–86/054a, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Lane, J. L. & C. R. Goldman, 1984. Size-fractionation of natural phytoplankton communities in nutrient bioassay studies. Hydrobiologia 118: 219–223.

    CAS  Google Scholar 

  • Larson, G. L., 1988. Crater Lake Limnological Studies 1987 Annual Report.

  • Larson, G. L., 1998. Crater Lake Limnological Studies 1997 Annual Report. Technical Report NPS/CCSOOSU/NRTR-98/13, National Park Service, Seattle, WA.

  • Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996a. Temperature, water chemistry, and optical properties of Crater Lake. Lake and Reservoir Management 12: 230–247.

    CAS  Google Scholar 

  • Larson, G. L., C. D. McIntire, R. E. Truitt, & M. W. Buktenica, 1996b. Zooplankton assemblages in Crater Lake, Oregon, USA. Lake and Reservoir Management 12: 281–297.

    Google Scholar 

  • Laws, E. A. & many others, 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnology and Oceanography 29: 1161–1169.

    Google Scholar 

  • Li, W. K., H. E. Glover & I. Morris, 1980. Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea. Limnology and Oceanography 25: 447–456.

    Article  CAS  Google Scholar 

  • Loeb, S. L. & J. E. Reuter, 1981. The epilithic periphytopn community: A five lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 21: 346–352.

    CAS  Google Scholar 

  • McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. DeBacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon. Lake and Reservoir Management 12: 259–280.

    Article  Google Scholar 

  • Miller, W. E., J. C. Greene & T. Shiroyama, 1978. The Selenastrum capricornutum Prinz algal assay bottle test: Experimental design, application, and data interpretation protocol. EPA-600/9–78–018, U.S. Environmental Protection Agency, Corvallis, Oregon.

    Google Scholar 

  • Nelson, P. O., J. F. Riley & G. L. Larson, 1996. Chemical solute mass balance for Crater Lake, Oregon. Lake and Reservoir Management 12: 248–258.

    CAS  Google Scholar 

  • Paerl, H. W., 1982. Factors limiting productivity of freshwater ecosystems. In Marshall K. C. (ed.), Advances in Microbial Ecology. Plenum Press, New York, 75–110.

    Google Scholar 

  • Perin, S., D. R. S. Lean, F. R. Pick & A. Mazumder, 2002. S Photosynthetic carbon allocation: Effects of planktivorous fish and nutrient enrichment. Aquatic Sciences 64: 217–238.

    Article  Google Scholar 

  • Rue, E. L. & K. W. Bruland, 1997. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnology and Oceanography 42: 901–910.

    CAS  Google Scholar 

  • Sheldon, R. W., 1984. Phytoplankton growth rates in the tropical ocean. Limnology and Oceanography 29: 1342–1346.

    Google Scholar 

  • Stoddard, J. L., 1987. Micronutrient and phosphorus limitation of phytoplankton abundance in Gem Lake, Sierra Nevada, California. Hydrobiologia 154: 103–111.

    Article  CAS  Google Scholar 

  • Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson & S. J. Giovannoni, 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.

    Article  CAS  Google Scholar 

  • Wurtsbaugh, W. A. & A. J. Horne, 1983. Iron in eutrophic Clear Lake, California: its importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic Sciences 40: 1419–1429.

    CAS  Google Scholar 

  • Wurtsbaugh, W. A., W. F. Vincent, R. Alfaro Tapia, C. L. Vincent & P. J. Richerson, 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshwater Biology 15: 185–195.

    Article  CAS  Google Scholar 

  • Yentsch, C. M., C. S. Yentsch & L. R. Strube, 1977. Variations in ammonium ehhancement, an indication of nitrogen deficiency in New England coastal phytoplankton populations. Journal of Marine Research 35: 539–555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Groeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groeger, A.W. Nutrient limitation in Crater Lake, Oregon. Hydrobiologia 574, 205–216 (2007). https://doi.org/10.1007/s10750-006-0353-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0353-3

Keywords

Navigation