Advertisement

Hydrobiologia

, Volume 574, Issue 1, pp 205–216 | Cite as

Nutrient limitation in Crater Lake, Oregon

  • Alan W. Groeger
Crater Lake, Oregon

Abstract

Experiments were carried out to determine what nutrient (or nutrients) was primarily responsible for limiting phytoplankton productivity in ultraoligotrophic Crater Lake. The experiments included in situ and laboratory nutrient addition bioassays utilizing the natural phytoplankton community, Selenastrum capricornutum bottle assays, photosynthetic responses, photosynthetic carbon metabolism, and response of dark uptake of 14CO2 with the addition of NH 4 + . The results suggested that a trace metal(s) or its availability was the primary factor limiting the epilimnetic phytoplankton productivity. Nitrogen was extremely low, and quickly became limiting with the addition of trace metals and a chelator. Iron is the most likely candidate as the limiting nutrient. Trace metals and nitrogen are also both important in limiting phytoplankton at 100 m, a depth where biologically mediated turnover of nutrients seems to be more important.

Keywords

Crater Lake Phytoplankton Nutrient limitation Trace metals Nitrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, G. R., F. L. Bair & V. Hunsaker, 1968. Trace and major element content of 170 High Sierra lakes in California. Limnology and Oceanography 13: 526–530.Google Scholar
  2. Bruland, K. W., J. R. Donat & D. A. Hutchins, 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography 36: 1555–1577.Google Scholar
  3. Buktenica, M. W. & G. L. Larson, 1996. Ecology of kokanee salmon and rainbow trout in Crater Lake, Oregon. Lake and Reservoir Management 12: 298–310.Google Scholar
  4. Burnison, B. K., 1980. Modified dimethyl sulfoxide (DMSO) for chlorophyll analysis of phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 37: 729–733.CrossRefGoogle Scholar
  5. Cavender-Bares, K. K., E. L. Mann, S. W. Chisholm, M. E. Ondrusek & R. B. Bidigare, 1999. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnology and Oceanography 44: 237–246.Google Scholar
  6. Collier, R., J. Dymond, J. McManus & J. Lupton, 1990. Chemical and physical properties of the water column at Crater Lake, Oregon. In Drake, E. G. Larson, J. Dymond & R. Collier (eds), Crater Lake, an Ecosystem Study. Pacific Division of the American Association for the Advancement of Science, 69–79.Google Scholar
  7. Dymond, J., R. Collier, J. McManus & G. L. Larson, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: Implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.Google Scholar
  8. Goldman, C. R., 1972. The role of minor nutrients in limiting the productivity of aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and Eutrophication: The Limiting-Nutrient Controversy. Special Symposium, American Society of Limnology and Oceanography Vol. 1: 21–33.Google Scholar
  9. Goldman, C. R., 1998. Four decades of change in two subalpine lakes. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 7–26.Google Scholar
  10. Groeger, A. W. & B. L. Kimmel, 1988. Photosynthetic carbon metabolism in a nitrogen-limited reservoir. Canadian Journal of Fisheries and Aquatic Sciences 45: 720–730.CrossRefGoogle Scholar
  11. Groeger, A. W. & B. L. Kimmel, 1989. Relationship between photosynthetic and respiratory carbon metabolism in freshwater phytoplankton. Hydrobiologia 173: 107–117.CrossRefGoogle Scholar
  12. Groeger, A. W. & T. E. Tietjen, 1993. Physiological responses of nutrient-limited phytoplankton to nutrient addition. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 370–372.Google Scholar
  13. Huntsman, S. A. & W. G. Sunda, 1980. The role of trace metals in regulating phytoplankton growth. In Morris I. (ed) The physiological ecology of phytoplankton. University of California Press, Berkeley, 285–328.Google Scholar
  14. Hutchinson, G. E., 1957. Treatise on limnology, 1. Wiley & Sons, New York.Google Scholar
  15. Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  16. Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  17. Landers, D. H., J. M. Eilers, D. F. Braake, W. S. Overton, P. E. Kellar, M. E. Silverstein, R. D. Sconbrod, R. E. Crowe, R. A. Linthurst, J. M. Omernik, S. A. Teague, & E. P. Meier, 1987. Characteristics of Lakes in the Western United States, Vol. 1. EPA/600/3–86/054a, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  18. Lane, J. L. & C. R. Goldman, 1984. Size-fractionation of natural phytoplankton communities in nutrient bioassay studies. Hydrobiologia 118: 219–223.Google Scholar
  19. Larson, G. L., 1988. Crater Lake Limnological Studies 1987 Annual Report.Google Scholar
  20. Larson, G. L., 1998. Crater Lake Limnological Studies 1997 Annual Report. Technical Report NPS/CCSOOSU/NRTR-98/13, National Park Service, Seattle, WA.Google Scholar
  21. Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996a. Temperature, water chemistry, and optical properties of Crater Lake. Lake and Reservoir Management 12: 230–247.Google Scholar
  22. Larson, G. L., C. D. McIntire, R. E. Truitt, & M. W. Buktenica, 1996b. Zooplankton assemblages in Crater Lake, Oregon, USA. Lake and Reservoir Management 12: 281–297.Google Scholar
  23. Laws, E. A. & many others, 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnology and Oceanography 29: 1161–1169.Google Scholar
  24. Li, W. K., H. E. Glover & I. Morris, 1980. Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea. Limnology and Oceanography 25: 447–456.CrossRefGoogle Scholar
  25. Loeb, S. L. & J. E. Reuter, 1981. The epilithic periphytopn community: A five lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 21: 346–352.Google Scholar
  26. McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. DeBacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon. Lake and Reservoir Management 12: 259–280.CrossRefGoogle Scholar
  27. Miller, W. E., J. C. Greene & T. Shiroyama, 1978. The Selenastrum capricornutum Prinz algal assay bottle test: Experimental design, application, and data interpretation protocol. EPA-600/9–78–018, U.S. Environmental Protection Agency, Corvallis, Oregon.Google Scholar
  28. Nelson, P. O., J. F. Riley & G. L. Larson, 1996. Chemical solute mass balance for Crater Lake, Oregon. Lake and Reservoir Management 12: 248–258.Google Scholar
  29. Paerl, H. W., 1982. Factors limiting productivity of freshwater ecosystems. In Marshall K. C. (ed.), Advances in Microbial Ecology. Plenum Press, New York, 75–110.Google Scholar
  30. Perin, S., D. R. S. Lean, F. R. Pick & A. Mazumder, 2002. S Photosynthetic carbon allocation: Effects of planktivorous fish and nutrient enrichment. Aquatic Sciences 64: 217–238.CrossRefGoogle Scholar
  31. Rue, E. L. & K. W. Bruland, 1997. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnology and Oceanography 42: 901–910.Google Scholar
  32. Sheldon, R. W., 1984. Phytoplankton growth rates in the tropical ocean. Limnology and Oceanography 29: 1342–1346.Google Scholar
  33. Stoddard, J. L., 1987. Micronutrient and phosphorus limitation of phytoplankton abundance in Gem Lake, Sierra Nevada, California. Hydrobiologia 154: 103–111.CrossRefGoogle Scholar
  34. Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson & S. J. Giovannoni, 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.CrossRefGoogle Scholar
  35. Wurtsbaugh, W. A. & A. J. Horne, 1983. Iron in eutrophic Clear Lake, California: its importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic Sciences 40: 1419–1429.Google Scholar
  36. Wurtsbaugh, W. A., W. F. Vincent, R. Alfaro Tapia, C. L. Vincent & P. J. Richerson, 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshwater Biology 15: 185–195.CrossRefGoogle Scholar
  37. Yentsch, C. M., C. S. Yentsch & L. R. Strube, 1977. Variations in ammonium ehhancement, an indication of nitrogen deficiency in New England coastal phytoplankton populations. Journal of Marine Research 35: 539–555.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Aquatic Station, Department of BiologyTexas State University—San MarcosSan MarcosUSA

Personalised recommendations