, Volume 571, Issue 1, pp 283–295 | Cite as

Food web of macroinvertebrate community in a Yangtze shallow lake: trophic basis and pathways

  • Xue-Qin Liu
  • Hong-Zhu Wang
  • Xiao-Min Liang
Primary Research Paper


No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure.


Yangtze shallow lake macroinvertebrates trophic basis food web quantification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (200 kb)


  1. Benke A. C. and Wallace J. B. (1980). Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 61: 108–118CrossRefGoogle Scholar
  2. Benke A. C. and Wallace J. B. (1997). Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology 78: 1132–1145CrossRefGoogle Scholar
  3. Benke A. C., Wallace J. B., Harrison J. W. and Koebel J. W. (2001). Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshwater Biology 46: 329–346CrossRefGoogle Scholar
  4. Briand F. and Cohen J. E. (1984). Community food webs have scale-invariant structure. Nature 307: 264–267CrossRefGoogle Scholar
  5. Calow P (1975). The feeding strategies of two freshwater gastropods, Ancylus fluviatilis and Planorbis contortus L. in terms of ingestion rates and absorption efficiency. Oecologia 20: 33–49CrossRefGoogle Scholar
  6. Christian R. R. and Luczkovich J. J. (1999). Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecological Modelling 117: 99–124CrossRefGoogle Scholar
  7. Closs G. P. and Lake P. S. (1994). Spatial and temporal variation in the structure of an intermittent-stream food web. Ecological Monographs 64: 1–21CrossRefGoogle Scholar
  8. Cohen J. E. (1977). Ratio of prey to predators in community food webs. Nature 270: 165–167CrossRefGoogle Scholar
  9. Cohen J. E., Beaver R. A., Cousins S. H., DeAngelis D. L., Goldwasser L., Heong K. L., Holt R. D., Kohn A. J., Lawton J. H., Martinez N., O’Malley R., Page L. M., Patten B. C., Pimm S. L., Polis G. A., Rejmanek M., Schoener T. W., Schoenly K., Sprules W. G., Teal J. M., Ulanowicz R. E., Warren P.␣H., Wilbur H. M. and Yodzis P. (1993). Improving food webs. Ecology 74: 2–52–258CrossRefGoogle Scholar
  10. Cohen J. E., Briand F. and Newman C. H. (1990). Community Food Webs, Data and Theory. Springer-Verlag, New York, USAGoogle Scholar
  11. Cohen J. E., Jonsson T. and Carpenter S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences 100: 1781–1786CrossRefGoogle Scholar
  12. DeAngelis D. L. (1975). Stability and connectance in food web models. Ecology 56: 238–243CrossRefGoogle Scholar
  13. Deng Z. and Jin B. (1991). The geographical environment and hydrological feature of the Bao’an Lake. In: Hu, C. and Huang, X. (eds) Collected Papers on the Fishery Ecology and Exploitation Technology of the Bao’an Lake, pp 16–22. Sicence Press, China (in Chinese)Google Scholar
  14. Bloem J., Bouwman L. A., Didden W. A. M., Hoenderboom G. H. J., Lebbink G., Marinissen J. C. Y., Vreeken-Buijs M. J. and Zwart K. B. (1994). Simulation of dynamics in nitrogen mineralization in the belowground food webs of two arable farming systems. Agriculture, Ecosystem, Environment 51: 199–208CrossRefGoogle Scholar
  15. Froneman P. W. (2004). Food web dynamics in a temperate temporarily open/closed estuary (South Africa). Estuarine, Coastal and Shelf Science 59: 87–95 CrossRefGoogle Scholar
  16. Gong, Z., 2002. Studies on ecology of macrozoobenthos in shallow lakes along the middle reaches of the Changjiang River. Ph.D. thesis. Chinese Academy of Sciences, China. (in Chinese)Google Scholar
  17. Hall S. J. and Raffaelli D. (1991). Food web patterns: lessons from a species-rich web. Journal of Animal Ecology 60: 823–842CrossRefGoogle Scholar
  18. Hall S. J. and Raffaelli D. (1993). Food webs: theory and reality. Advances in Ecological Research 24: 187–239CrossRefGoogle Scholar
  19. Hildrew A. G. (1992). Food webs and species interactions. In: Calow, P. and Petts, G. E. (eds) The River Handbook, pp 309–330. Blackwell Sciences, OxfordGoogle Scholar
  20. Huang, X., 1999. Survey, Observation and Analysis of Lake Ecology. Standards Press of China, China (in Chinese)Google Scholar
  21. Jeppesen E., Jensen J. P., Sondergaard M., Lauridsen T., Pedersen L. J. and Jensen L. (1997). Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164CrossRefGoogle Scholar
  22. Jones J. I. and Waldron S. (2003). Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396–1407CrossRefGoogle Scholar
  23. Liang Y., Wu T. and Xie Z. (1995). On the current conditions of zoobenthos in Baoan Lake with an assessment of its potential fishery production capacity. In: Liang, Y. and Liu, H. (eds) Resources, Environment and Fishery Ecological Management of Macrophytic Lakes, pp 178–193. Science Press, China, (in Chinese)Google Scholar
  24. Liu, H., 2003. Studies on the impact of water eutrophication and the application of fish medicine on zooplankton. Dsc Thesis. Chinese Academy of Sciences, China (in Chinese)Google Scholar
  25. Lu M. and Ni L. (1999). Ecological studies on the dynamics of submersed vegetation in a small shallow lake, Lake Biandantang. Acta Hydrobiologica Sinica 23(suppl.): 47–52Google Scholar
  26. Moore J. C., Berlow E. L., Coleman D. C., Dong Q., Hasting A., Johnson N. C., McCann K. S., Melville K., Morin P. J., Nadelhoffer K., Rosemond A. D., Post D. M., Sabo J. L., Scow K. M., Vanni M. J. and Wall D. H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600CrossRefGoogle Scholar
  27. Pace M. L., Cole J. J., Carpenter S. R. and Kitchell J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14: 483–489PubMedCrossRefGoogle Scholar
  28. Palmer A. R. (1992). Calcification in marine molluscs: how costly is it?. Proceedings of the National Academy of Science 89: 1379–1382CrossRefGoogle Scholar
  29. Pianka E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53–74CrossRefGoogle Scholar
  30. Pimm S. L. (1982). Food Webs. Chapman and Hall, London, EnglandGoogle Scholar
  31. Pimm S. L., Lawton J. H. and Cohen J. E. (1991). Food web patterns and their consequence. Nature 350: 669–674CrossRefGoogle Scholar
  32. Polis G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist 138: 123–155CrossRefGoogle Scholar
  33. Polis G. A. (1994). Food webs, trophic cascades and community structure. Australian Journal of Ecology 19: 121–136CrossRefGoogle Scholar
  34. Raffaelli D. and Hall S. J. (1996). Assessing the relative importance of trophic links in food webs. In: Polis, G. A. and Winemiller, K. O. (eds) Food webs: Integration of Patterns and Dynamics, pp 185–1991. Chapman and Hall, New YorkGoogle Scholar
  35. Scheu S. (2002). The soil food web: structure and perspectives. European Journal of Soil Biology 38: 11–20CrossRefGoogle Scholar
  36. Schmid-Araya J. M., Hildrew A. G., Robertson A., Schmid P. E. and Winterbottom J. (2002). The importance of meiofuna in food webs: evidence from an acid stream. Ecology 83: 1271–1285CrossRefGoogle Scholar
  37. Strong D (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754CrossRefGoogle Scholar
  38. Su Z., Zhang T. and Cai Q. (1995). On the change of aquatic vegetation in Baoan Lake with remarks on its fishery. In: Liang, Y. and Liu, H. (eds) Resources, Environment and Fishery Ecological Management of Macrophytic Lakes, pp 147–159. Science Press, China, (in Chinese)Google Scholar
  39. Sugihara G., Schoenly K. and Trombla A. (1989). Scale invariance in food web properties. Science 245: 48–52PubMedGoogle Scholar
  40. Tavares A. F. and Williams D. D. (1990). Life histories, diet and niche overlap of three sympatric species of Elmidae (Coleoptera) in a temperate stream. Canadian Entomologist 122: 563–577CrossRefGoogle Scholar
  41. Tavares-Cromar A. F. and Williams D. D. (1996). The importance of temporal resolution in food web analysis: evidence from a detritus-based stream. Ecological Monographs 66: 91–113CrossRefGoogle Scholar
  42. Thompson R. M. and Townsend C. R. (2003). Impacts on stream food webs of native and exotic forest: an intercontinental comparison. Ecology 84: 145–161 Google Scholar
  43. Vadeboncoeur Y. and Lodge D. M. (2000). Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. Journal of the North American Benthological Society 19: 68–81CrossRefGoogle Scholar
  44. Vadeboncoeur Y., Vander Zanden M. J. and Lodge D. M. (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52: 44–54CrossRefGoogle Scholar
  45. Vander Zanden M. J. and Vadeboncoeur Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161CrossRefGoogle Scholar
  46. Wang W. X., Ke C., Yu K. N. and Lam P. K. S. (2000). Modeling ratiocesium bioaccumulation in a marine food chain. Marine Ecology Progress Series 208: 41–50Google Scholar
  47. Warren P. H. (1989). Spatial and temporal variation in the structure of a freshwater food web. Oikos 55: 299–311Google Scholar
  48. Wetzel R. G. (2001). Limnology, Lake and River Ecosystems. Academic Press, USA, 731–784Google Scholar
  49. Williams R. J. and Martinez N. D. (2000). Simple rules yield complex food webs. Nature 404: 180–183PubMedCrossRefGoogle Scholar
  50. Woodward G. and Hildrew A. G. (2002). Food web structure in riverine landscapes. Freshwater Biology 47: 777–798CrossRefGoogle Scholar
  51. Wu T. (1991). The standing crop of macro-invertebrates and its fishery-management in the Bao’an Lake. In: Hu, C. and Huang, X. (eds) Collected Papers on the Fishery Ecology and Exploitation Technology of the Bao’an Lake, pp 74–79. Science Press, China, (in Chinese)Google Scholar
  52. Xu Q., Wang H. and Zhang S. (2003). The impact of overstocking of mitten crab, Eriocheir sinensis, on lacustrine zoobenthic community. Acta Hydrobiologica Sinica 27: 41–46, (in Chinese)Google Scholar
  53. Yan, Y., 1998. Studies on ecological energetics and production of macrozoobenthos in shallow lakes. Dsc Thesis. Chinese Academy of Sciences, China (in Chinese)Google Scholar
  54. Yan Y (2000). Life cycle and production of Chironomidae (Diptera) in Biandantang, a typical macrophytic lake (Hubei, China). Chinese Journal of Oceanology and Limnology 18: 221–226Google Scholar
  55. Yan Y. and Liang Y. (1999). A study of dry- to- wet weight ratio of aquatic macroinvertebrates. Journal of Huazhong University of Science and Technology 27: 61–63, (in Chinese)Google Scholar
  56. Yan Y., Liang Y. and Wang H. (1999a). Annual production of five species of Chironomidae (Diptera) in Houhu Lake, a typical algal lake (Wuhan, China). Chinese Journal of Oceanology and Limnology 17: 112–118Google Scholar
  57. Yan Y., Liang Y. and Wang H. (1999b). Energy flow of Bellamya aeruginosa in a shallow macrophyte-dominated lake, Lake Biandantang. Acta Hydrobiologica Sinica 23(Suppl.): 115–121Google Scholar
  58. Yan Y., Liang Y. and Wang H. (1999c). Production of gastropods in Lake Biandantang I. Annual production of Bellamya aeruginosa. Acta Hydrobiologica Sinica 23: 346–351, (in Chinese)Google Scholar
  59. Yan Y., Liang Y. and Wang H. (2001). Production of gastropods in Lake Biandantang II. Annual production of Parafossarulus stritulus. Acta Hydrobiologica Sinica 25: 36–41Google Scholar
  60. Yan Y. and Wang H. (1999). Abundance and production of Branchiura sowerbyi (Oligochaeta: Tubificidae) in two typical shallow lakes (Hubei, China). Chinese Journal of Oceanology and Limnology 17: 79–85Google Scholar
  61. Yu D. and Zeng Y. (1996). A comparative study on the plant community diversity in two subregions Qiaodunhu and Biandantang, Lake Baoan. Acta Hydrobiologica Sinica 20(Suppl.): 156–163Google Scholar
  62. Zhang, T., 2004. Life-history strategies, trophic patterns and community structure in the fishes of Lake Biandantang. Dsc Thesis. Chinese Academy of Sciences, China. (in Chinese)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations