, Volume 568, Issue 1, pp 43–53 | Cite as

Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting

  • M. Dorenbosch
  • B. J. A. Pollux
  • A. Z. Pustjens
  • S. Rajagopal
  • I. Nagelkerken
  • G. van der Velde
  • S. Y. Moon- van der Staay
Primary Research Paper


The genetic structure of spatially separated populations of the Dory snapper, Lutjanus fulviflamma, was investigated in seven areas along the East African coast and one area in the Comoros archipelago in the western Indian Ocean, using amplified fragment length polymorphism (AFLP). Phylogenetic and multidimensional scaling analyses did not show any clear clustering of individuals into the spatially separated populations. The analysis of molecular variance clearly showed that the variation was partitioned within populations and not between populations, leading to low genetic differentiation among populations. No clear relationship between genetic distance and geographic distance between populations was observed. These observations suggest that populations of Lutjanus fulviflamma have an open structure and are possibly genetically connected on a large geographic scale in the western Indian Ocean.


AFLP coral reef fish dispersal gene flow genetic connectivity Indian Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bay L. K., Choat J. H. and Robertson D. R. (2004). High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Marine Biology 144: 757–767CrossRefGoogle Scholar
  2. Beckman Coulter, 2002. CEQ™ 8000 Genetic Analysis System User’s Guide. Beckman Coulter Inc., Fullerton, California, USAGoogle Scholar
  3. Bernardi G., Holbrook S. J. and Schmitt R. J. (2001). Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Marine Biology 138: 457–465CrossRefGoogle Scholar
  4. Berry O., Tocher M. D. and Sarre S. D. (2004). Can assignment tests measure dispersal?. Molecular Ecology 13: 551–561PubMedCrossRefGoogle Scholar
  5. Brzustowski, J. 2002. Doh assignment test calculator. Available at http://www2.biology.ualberta.ca/jbrzusto/Doh.phpGoogle Scholar
  6. De Bruin A., Ibelings B. W. and van Donk (2003). Molecular techniques in phytoplankton research: from allozyme electrophoresis to genomics. Hydrobiologia 491: 47–63CrossRefGoogle Scholar
  7. De Roos K. (2003). CEQ™ 8000 AFLP Protocol. Beckman Coulter Netherlands BV, Mijdrecht, The NetherlandsGoogle Scholar
  8. Doherty P. J., Planes S. and Mather P. (1995). Gene flow and larval duration in seven species of fish from the Great Barrier reef. Ecology 76: 2373–2391CrossRefGoogle Scholar
  9. Excoffier L., Smouse P. E. and Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491PubMedGoogle Scholar
  10. Fauvelot C. and Planes S. (2002). Understanding origins of present-day genetic structures in marine fish: biologically or historically driven patterns?. Marine Biology 141: 773–788CrossRefGoogle Scholar
  11. Garcia A. A. F., Benchimol L. L., Barbosa A. M. M., Geraldi I. O. and Souza C. L. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology 27: 579–588CrossRefGoogle Scholar
  12. Geertjes G. J., Postema J., Kamping A., van Delden J. J., Videler J. J. and van de Zande L. (2004). Allozymes and RAPDs detect little genetic population substructuring in the Caribbean stoplight parrotfish Sparisoma viride. Marine Ecology Progress Series 279: 225–235Google Scholar
  13. Gold J. R. and Richardson L. R. (1994). Mitochondrial DNA variation among ‘red’ fishes from the Gulf of Mexico. Fishery Research 20: 137–150CrossRefGoogle Scholar
  14. Goudet J. (1995). FSTAT version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485–486Google Scholar
  15. Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755PubMedCrossRefGoogle Scholar
  16. Jones G. P., Milicich M.J., Emslie M. J. and Lunow C. (1999). Self-recruitment in a coral reef fish population. Nature 402: 802–804CrossRefGoogle Scholar
  17. Kingsford M. J., Leis J. M., Shanks A., Lindeman K. C., Morgan S. G. and Pineda J. (2002). Sensory environments, larval abilities and local self-recruitment. Bulletin of Marine Science 70: 309–340Google Scholar
  18. Leis J. M. (2002). Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation and a reassessment of the open population paradigm. Environmental Biology of Fishes 65: 199–208CrossRefGoogle Scholar
  19. Leis J. M. and Carson-Ewart B. M. (2000). The Larvae of Indo-Pacific Coastal Fishes. An Identification Guide to Marine Fish Larvae. Fauna Malesiana Handbook 2, Brill, Leiden Google Scholar
  20. Leis J. M. and Rennis D. S. (2000). Lutjanidae. In: Leis, J. M. and Carson-Ewart, B.M. (eds) The Larvae of Indo-Pacific Coastal Fishes. An Identification Guide to Marine Fish Larvae, pp 329–337. Fauna Malesiana Handbook 2, Brill, LeidenGoogle Scholar
  21. Manel S., Gaggiotti O. E. and Waples R. S. (2005). Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution 20: 136–142CrossRefGoogle Scholar
  22. McCartney M. A., Acevedo J., Heredia C., Rico C., Quenoville B., Bermingham E. and McMillan W. O. (2003). Genetic mosaic in a marine species flock. Molecular Ecology 12: 2963–2973PubMedCrossRefGoogle Scholar
  23. McMillen-Jackson A. L., Bert T. M., Cruz-Lopez H., Seyoum S., Orsoy T. and Crabtree R. E. (2005). Molecular genetic variation in tarpon (Megalops atlanticus Valenciennes) in the northern Atlantic Ocean. Marine Biology 146: 253–261CrossRefGoogle Scholar
  24. Mickett K., Morton C., Feng J., Li P., Simmons M., Cao D., Dunham R. A. and Liu Z. (2003). Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture 228: 91–105CrossRefGoogle Scholar
  25. Miller, M. P., 1998. AMOVA-PREP: a program for the preparation of analysis of molecular variance input files from dominant-markers raw data, version 1.01. Available at http://www.marksgeneticsoftware.net/amovaprep.htmGoogle Scholar
  26. Miller, M. P., 1999. Tools for population genetic analyses (TFPGA): a windows ™ program for the analysis of allozyme and molecular population genetic data. Available at http://www.marksgeneticsoftware.net/_vti_bin/shtml.exe/tfpga.htmGoogle Scholar
  27. Mora C. and Sale P. F. (2002). Are populations of coral reef fish open or closed?. Trends in Ecology & Evolution 17: 422–428CrossRefGoogle Scholar
  28. Nei M. and Li W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science USA 76: 5269–5273CrossRefGoogle Scholar
  29. Nzioka R. M. (1979). Observations on the spawning seasons of East African reef fishes. Journal of Fish Biology 14: 329–342CrossRefGoogle Scholar
  30. Paetkau D., Calvert W., Sterling I. and Strobeck C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4: 347–354PubMedGoogle Scholar
  31. Planes S., Galzin R. and Bonhomme F. (1996). A genetic metapopulation model for reef fishes in oceanic islands: the case of the surgeonfish, Acanthurus triostegus. Journal of Evolutionay Biology 9: 103–117CrossRefGoogle Scholar
  32. Planes S. (1993). Genetic differentiation in relation to restricted larval dispersal of the convict surgeonfish Acanthurus triostegus in French Polynesia. Marine Ecology Progress Series 98: 237–246Google Scholar
  33. Planes S., Romans P. and Lecomte-Finiger R. (1998). Genetic evidence of closed life cycles for some coral reef fishes within Taiaro Lagoon (Tuamotu Archipelago, French Polynesia). Coral Reefs 17: 9–14CrossRefGoogle Scholar
  34. Planes S. and Fauvelot C. (2002). Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56: 378–399PubMedCrossRefGoogle Scholar
  35. Ramon M. L., Lobel P. S. and Sorenson M. D. (2003). Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization?. Molecular Ecology 12: 2975–2980 PubMedCrossRefGoogle Scholar
  36. Raymond M. and Rousset F. (1995). GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249Google Scholar
  37. Richmond M. D. (2002). A Field Guide to the Seashores of Eastern Africa and the Western Indian Ocean Islands. Sida/SAREC-UDSM, Dar es Salaam, TanzaniaGoogle Scholar
  38. Rivera M. A. J., Kelley C. D. and Roderick G. K. (2004). Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analysis. Biological Journal of the Linnean Society 81: 449–468CrossRefGoogle Scholar
  39. Rhodes K. L., Lewis R. I., Chapman R. W. and Sadovy Y. (2003). Genetic structure of the camouflage grouper, Ephinephelus polyphekadion (Pisces: Serranidae), in the western central Pacific. Marine Biology 142: 771–776Google Scholar
  40. Roberts C. M. (1997). Connectivity and management of Caribbean coral reefs. Science 278: 1454–1457PubMedCrossRefGoogle Scholar
  41. Saitou N. and Nei M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425 PubMedGoogle Scholar
  42. Schmitt R. J. and Holbrook S. J. (2002). Correlates of spatial variation in settlement of two tropical damselfishes. Marine and Freshwater Research 53: 329–337CrossRefGoogle Scholar
  43. Shulman M. J. and Bermingham E. (1995). Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evolution 49: 897–910 CrossRefGoogle Scholar
  44. Simpson S. D., Meekan M. G., McCauley R. D. and Jeffs A. (2004). Attraction of settlement-stage coral reef fishes to reef noise. Marine Ecology Progress Series 276: 263–268Google Scholar
  45. Stepien C. A., Randall J. E. and Rosenblatt R. H. (1994). Genetic and morphological divergence of a circumtropical complex of goatfishes: Mulloidichthys vanicolensis, M. dentatus, and M. martinicus. Pacific Science 48: 44–56Google Scholar
  46. Swearer S. E., Caselle J. E., Lea D. W. and Warner R. R. (1999). Larval retention and recruitment in an island population of a coral-reef fish. Nature 402: 799–802CrossRefGoogle Scholar
  47. Swofford, D. L., 2002. PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4.0 Beta. Sinauer Associates, Sunderland, Massachusetts, USAGoogle Scholar
  48. Taylor M. S. and Hellberg M. E. (2003). Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299: 107–109PubMedCrossRefGoogle Scholar
  49. van Herwerden L., Benzie J. and Davies C. (2003). Microsatellite variation and population genetic structure of the red throat emperor on the Great Barrier Reef. Journal of Fish Biology 62: 987–999CrossRefGoogle Scholar
  50. Vos P., Hogers R. and Bleeker M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414PubMedGoogle Scholar
  51. Warner R. R. (1997). Evolutionary ecology: how to reconcile pelagic dispersal with local adaptation. Coral Reefs 16: S115–S120CrossRefGoogle Scholar
  52. Wright S. (1931). Evolution in Mendelian populations. Genetics 16: 97–159 Google Scholar
  53. Yeh, F. C. & T. J. B. Boyle, 1999. POPGENE Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis. Available at http://www.ualberta.ca/~fyeh/Google Scholar
  54. Zatcoff M. S., Ball A. O. and Sedberry G. R. (2004). Population genetic analysis of red grouper, Epinephelus morio, and scamp, Mycteroperca phenax, from the southeastern US Atlantic and Gulf of Mexico. Marine Biology 144: 769–777CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. Dorenbosch
    • 1
  • B. J. A. Pollux
    • 2
    • 4
  • A. Z. Pustjens
    • 1
  • S. Rajagopal
    • 1
  • I. Nagelkerken
    • 1
  • G. van der Velde
    • 1
  • S. Y. Moon- van der Staay
    • 3
  1. 1.Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Department of Plant–Animal Interaction, Centre for LimnologyNetherlands Institute of Ecology (NIOO-KNAW)MaarssenThe Netherlands

Personalised recommendations