Skip to main content
Log in

Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The genetic structure of spatially separated populations of the Dory snapper, Lutjanus fulviflamma, was investigated in seven areas along the East African coast and one area in the Comoros archipelago in the western Indian Ocean, using amplified fragment length polymorphism (AFLP). Phylogenetic and multidimensional scaling analyses did not show any clear clustering of individuals into the spatially separated populations. The analysis of molecular variance clearly showed that the variation was partitioned within populations and not between populations, leading to low genetic differentiation among populations. No clear relationship between genetic distance and geographic distance between populations was observed. These observations suggest that populations of Lutjanus fulviflamma have an open structure and are possibly genetically connected on a large geographic scale in the western Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bay L. K., Choat J. H. and Robertson D. R. (2004). High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Marine Biology 144: 757–767

    Article  CAS  Google Scholar 

  • Beckman Coulter, 2002. CEQ™ 8000 Genetic Analysis System User’s Guide. Beckman Coulter Inc., Fullerton, California, USA

  • Bernardi G., Holbrook S. J. and Schmitt R. J. (2001). Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Marine Biology 138: 457–465

    Article  CAS  Google Scholar 

  • Berry O., Tocher M. D. and Sarre S. D. (2004). Can assignment tests measure dispersal?. Molecular Ecology 13: 551–561

    Article  PubMed  Google Scholar 

  • Brzustowski, J. 2002. Doh assignment test calculator. Available at http://www2.biology.ualberta.ca/jbrzusto/Doh.php

  • De Bruin A., Ibelings B. W. and van Donk (2003). Molecular techniques in phytoplankton research: from allozyme electrophoresis to genomics. Hydrobiologia 491: 47–63

    Article  Google Scholar 

  • De Roos K. (2003). CEQ™ 8000 AFLP Protocol. Beckman Coulter Netherlands BV, Mijdrecht, The Netherlands

    Google Scholar 

  • Doherty P. J., Planes S. and Mather P. (1995). Gene flow and larval duration in seven species of fish from the Great Barrier reef. Ecology 76: 2373–2391

    Article  Google Scholar 

  • Excoffier L., Smouse P. E. and Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Fauvelot C. and Planes S. (2002). Understanding origins of present-day genetic structures in marine fish: biologically or historically driven patterns?. Marine Biology 141: 773–788

    Article  Google Scholar 

  • Garcia A. A. F., Benchimol L. L., Barbosa A. M. M., Geraldi I. O. and Souza C. L. (2004). Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology 27: 579–588

    Article  CAS  Google Scholar 

  • Geertjes G. J., Postema J., Kamping A., van Delden J. J., Videler J. J. and van de Zande L. (2004). Allozymes and RAPDs detect little genetic population substructuring in the Caribbean stoplight parrotfish Sparisoma viride. Marine Ecology Progress Series 279: 225–235

    CAS  Google Scholar 

  • Gold J. R. and Richardson L. R. (1994). Mitochondrial DNA variation among ‘red’ fishes from the Gulf of Mexico. Fishery Research 20: 137–150

    Article  Google Scholar 

  • Goudet J. (1995). FSTAT version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485–486

    Google Scholar 

  • Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Jones G. P., Milicich M.J., Emslie M. J. and Lunow C. (1999). Self-recruitment in a coral reef fish population. Nature 402: 802–804

    Article  CAS  Google Scholar 

  • Kingsford M. J., Leis J. M., Shanks A., Lindeman K. C., Morgan S. G. and Pineda J. (2002). Sensory environments, larval abilities and local self-recruitment. Bulletin of Marine Science 70: 309–340

    Google Scholar 

  • Leis J. M. (2002). Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation and a reassessment of the open population paradigm. Environmental Biology of Fishes 65: 199–208

    Article  Google Scholar 

  • Leis J. M. and Carson-Ewart B. M. (2000). The Larvae of Indo-Pacific Coastal Fishes. An Identification Guide to Marine Fish Larvae. Fauna Malesiana Handbook 2, Brill, Leiden

    Google Scholar 

  • Leis J. M. and Rennis D. S. (2000). Lutjanidae. In: Leis, J. M. and Carson-Ewart, B.M. (eds) The Larvae of Indo-Pacific Coastal Fishes. An Identification Guide to Marine Fish Larvae, pp 329–337. Fauna Malesiana Handbook 2, Brill, Leiden

    Google Scholar 

  • Manel S., Gaggiotti O. E. and Waples R. S. (2005). Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution 20: 136–142

    Article  Google Scholar 

  • McCartney M. A., Acevedo J., Heredia C., Rico C., Quenoville B., Bermingham E. and McMillan W. O. (2003). Genetic mosaic in a marine species flock. Molecular Ecology 12: 2963–2973

    Article  PubMed  CAS  Google Scholar 

  • McMillen-Jackson A. L., Bert T. M., Cruz-Lopez H., Seyoum S., Orsoy T. and Crabtree R. E. (2005). Molecular genetic variation in tarpon (Megalops atlanticus Valenciennes) in the northern Atlantic Ocean. Marine Biology 146: 253–261

    Article  CAS  Google Scholar 

  • Mickett K., Morton C., Feng J., Li P., Simmons M., Cao D., Dunham R. A. and Liu Z. (2003). Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture 228: 91–105

    Article  CAS  Google Scholar 

  • Miller, M. P., 1998. AMOVA-PREP: a program for the preparation of analysis of molecular variance input files from dominant-markers raw data, version 1.01. Available at http://www.marksgeneticsoftware.net/amovaprep.htm

  • Miller, M. P., 1999. Tools for population genetic analyses (TFPGA): a windows ™ program for the analysis of allozyme and molecular population genetic data. Available at http://www.marksgeneticsoftware.net/_vti_bin/shtml.exe/tfpga.htm

  • Mora C. and Sale P. F. (2002). Are populations of coral reef fish open or closed?. Trends in Ecology & Evolution 17: 422–428

    Article  Google Scholar 

  • Nei M. and Li W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science USA 76: 5269–5273

    Article  CAS  Google Scholar 

  • Nzioka R. M. (1979). Observations on the spawning seasons of East African reef fishes. Journal of Fish Biology 14: 329–342

    Article  Google Scholar 

  • Paetkau D., Calvert W., Sterling I. and Strobeck C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4: 347–354

    PubMed  CAS  Google Scholar 

  • Planes S., Galzin R. and Bonhomme F. (1996). A genetic metapopulation model for reef fishes in oceanic islands: the case of the surgeonfish, Acanthurus triostegus. Journal of Evolutionay Biology 9: 103–117

    Article  Google Scholar 

  • Planes S. (1993). Genetic differentiation in relation to restricted larval dispersal of the convict surgeonfish Acanthurus triostegus in French Polynesia. Marine Ecology Progress Series 98: 237–246

    Google Scholar 

  • Planes S., Romans P. and Lecomte-Finiger R. (1998). Genetic evidence of closed life cycles for some coral reef fishes within Taiaro Lagoon (Tuamotu Archipelago, French Polynesia). Coral Reefs 17: 9–14

    Article  Google Scholar 

  • Planes S. and Fauvelot C. (2002). Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56: 378–399

    Article  PubMed  CAS  Google Scholar 

  • Ramon M. L., Lobel P. S. and Sorenson M. D. (2003). Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization?. Molecular Ecology 12: 2975–2980

    Article  PubMed  Google Scholar 

  • Raymond M. and Rousset F. (1995). GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249

    Google Scholar 

  • Richmond M. D. (2002). A Field Guide to the Seashores of Eastern Africa and the Western Indian Ocean Islands. Sida/SAREC-UDSM, Dar es Salaam, Tanzania

    Google Scholar 

  • Rivera M. A. J., Kelley C. D. and Roderick G. K. (2004). Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analysis. Biological Journal of the Linnean Society 81: 449–468

    Article  Google Scholar 

  • Rhodes K. L., Lewis R. I., Chapman R. W. and Sadovy Y. (2003). Genetic structure of the camouflage grouper, Ephinephelus polyphekadion (Pisces: Serranidae), in the western central Pacific. Marine Biology 142: 771–776

    Google Scholar 

  • Roberts C. M. (1997). Connectivity and management of Caribbean coral reefs. Science 278: 1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Saitou N. and Nei M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425

    PubMed  CAS  Google Scholar 

  • Schmitt R. J. and Holbrook S. J. (2002). Correlates of spatial variation in settlement of two tropical damselfishes. Marine and Freshwater Research 53: 329–337

    Article  Google Scholar 

  • Shulman M. J. and Bermingham E. (1995). Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evolution 49: 897–910

    Article  Google Scholar 

  • Simpson S. D., Meekan M. G., McCauley R. D. and Jeffs A. (2004). Attraction of settlement-stage coral reef fishes to reef noise. Marine Ecology Progress Series 276: 263–268

    Google Scholar 

  • Stepien C. A., Randall J. E. and Rosenblatt R. H. (1994). Genetic and morphological divergence of a circumtropical complex of goatfishes: Mulloidichthys vanicolensis, M. dentatus, and M. martinicus. Pacific Science 48: 44–56

    Google Scholar 

  • Swearer S. E., Caselle J. E., Lea D. W. and Warner R. R. (1999). Larval retention and recruitment in an island population of a coral-reef fish. Nature 402: 799–802

    Article  CAS  Google Scholar 

  • Swofford, D. L., 2002. PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4.0 Beta. Sinauer Associates, Sunderland, Massachusetts, USA

  • Taylor M. S. and Hellberg M. E. (2003). Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299: 107–109

    Article  PubMed  CAS  Google Scholar 

  • van Herwerden L., Benzie J. and Davies C. (2003). Microsatellite variation and population genetic structure of the red throat emperor on the Great Barrier Reef. Journal of Fish Biology 62: 987–999

    Article  Google Scholar 

  • Vos P., Hogers R. and Bleeker M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414

    PubMed  CAS  Google Scholar 

  • Warner R. R. (1997). Evolutionary ecology: how to reconcile pelagic dispersal with local adaptation. Coral Reefs 16: S115–S120

    Article  Google Scholar 

  • Wright S. (1931). Evolution in Mendelian populations. Genetics 16: 97–159

    Google Scholar 

  • Yeh, F. C. & T. J. B. Boyle, 1999. POPGENE Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis. Available at http://www.ualberta.ca/~fyeh/

  • Zatcoff M. S., Ball A. O. and Sedberry G. R. (2004). Population genetic analysis of red grouper, Epinephelus morio, and scamp, Mycteroperca phenax, from the southeastern US Atlantic and Gulf of Mexico. Marine Biology 144: 769–777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nagelkerken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorenbosch, M., Pollux, B.J.A., Pustjens, A.Z. et al. Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia 568, 43–53 (2006). https://doi.org/10.1007/s10750-006-0020-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0020-8

Keywords

Navigation