, Volume 546, Issue 1, pp 71–80 | Cite as

Toward a Better Understanding of the Phylogeny of the Asplanchnidae (Rotifera)

  • Elizabeth J. Walsh
  • Robert L. Wallace
  • Russell J. Shiel


We investigated the phylogenetic relationships of Family Asplanchnidae using both morphological and molecular data. The morphological database, comprising 23 characters from 19 taxa (15 Asplanchnidae and 4 outgroups), was compiled from a survey of the literature and our own observations; the molecular data (ITS and V4 region nuclear regions and mitochondrial cox1) was sequenced from specimens that we collected. Our analysis of the morphological data set (maximum parsimony) yielded 12 most-parsimonious trees with a tree length of 27 steps. From this analysis we conclude (1) Asplanchnidae is a monophyletic group as are the three genera comprising it, (2) there is no compelling support for the argument that Asplanchna should be separated into two discrete genera, and (3) there is some support for the proposal that Asplanchnidae and Synchaetidae are sister groups. Our analysis of the molecular data set supports the first two of these conclusions while the sister group of the family varied depending on the gene region analyzed and families and genera included. Current understanding of the phylogeny of Asplanchnidae is hampered by the need for additional informative morphological characters and a lack of molecular data for the genus Harringia and several other members of the Asplanchnidae.


cladistics evolution nrDNA mtDNA morphology Monogononta Synchaetidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Derry, A. M., Hebert, P. D. N., Prepas, E. E. 2003Evolution of rotifers in saline and subsaline lakes: A molecular phylogenetic approachLimnology and Oceanography48675685Google Scholar
  2. Dhanapathi, M. V. S. S. 1975Rotifers from Andhra Pradesh, IndiaZoological Journal of the Linnean Society578594Google Scholar
  3. Faith, D. P., Cranston, P. S. 1991Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structureCladistics7128CrossRefGoogle Scholar
  4. Felsenstein, J. 1985Confidence limits on phylogenies: An approach using the bootstrapEvolution39783791Google Scholar
  5. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. 1994DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebratesMolecular Marine Biology and Biotechnology3294299PubMedGoogle Scholar
  6. Gilbert, J. J. 1980Feeding in the rotifer Asplanchna: behavior, cannibalism, selectivity, prey defenses, and impact on rotifer communitiesKerfoot, W. C. eds. Evolution and Ecology of Zooplankton CommunitiesUniv. Press New EnglandHanover, NH158172Google Scholar
  7. Gilbert, J. J. 1999Kairomone-induced morphological defenses in rotifersTollrian, R.Harvell, C. D. eds. The Ecology and Evolution of Inducible Defenses Princeton University PressPrinceton, NJ127141Google Scholar
  8. Gilbert, J. J., Birky, C. W., Wurdak, E. S. 1979Taxonomic relationships of Asplanchna brightwelli, A. intermedia, and A. sieboldiArchiv für Hydrobiologie87224242Google Scholar
  9. Gómez, A., Serra, M. S., Carvalho, G. R., Hunt, D. L. 2002Speciation in ancient cryptic species complexes. Evidence from molecular phylogeny of Brachionus plicatilis (Rotifera)Evolution5614311444PubMedGoogle Scholar
  10. Harring, H. K. 1913A list of the Rotatoria of Washington and vicinity with descriptions of a new genus and ten new speciesProceedings of the U.S. Natural Museum46387405Google Scholar
  11. Hollowday, E. D. 2002Rotifera, Vol. 6. Family SynchaetidaeNogrady, T.Segers, H. eds. Guides to the Identification of the Microinvertebrates of the Continental Waters of the WorldBackhuys PublishersThe Hague87211Google Scholar
  12. Hudson, C. T., Gosse, P. H. 1886The Rotifera or Wheel Animacules. Vol. ILongmans, Green, and Co.London128Google Scholar
  13. Joanidopoulos, K. D., Marwan, W. 1998Specific behavioural responses triggered by identified mechanosensory receptor cells in the apical field of the giant rotifer Asplanchna sieboldiJournal of Experimental Biology201169177PubMedGoogle Scholar
  14. Joanidopoulos, K. D., Marwan, W. 1999A combination of chemosensory and mechanosensory stimuli triggers the male mating response in the giant rotifer Asplanchna sieboldiEthology105465475CrossRefGoogle Scholar
  15. Jose de Paggi, S. 2002Rotifera, Vol. 6. Family AsplanchnidaeNogrady, T.Segers, H. eds. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World Backhuys PublishersThe Hague127Google Scholar
  16. Kappes, H., Mechenich, C., Sinsch, U. 2000Long-term dynamics of Asplanchna priodonta in Lake Windsborn with comments on the dietHydrobiologia43291100CrossRefGoogle Scholar
  17. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. 2 volumes. Gebrüder Borntraeger, Berlin, Stuttgart, Germany, Textband 673 pp., Tafelband 234 TafelnGoogle Scholar
  18. Koste, W., Tobias, W. 1989Rotatorien der Sélingúe-Talsperre in Mali, Westafrika (Aschelminthes)Senckenbergiana biologica69441466Google Scholar
  19. Kutikova, L. A. 1983Parallelism in the evolution of rotifersHydrobiologia10437CrossRefGoogle Scholar
  20. Melone, G., Ricci, C., Segers, H., Wallace, R. L. 1998Phylogenetic relationships of phylum Rotifera with emphasis on the families of BdelloideaHydrobiologia387/388101107CrossRefGoogle Scholar
  21. Myers, F. J. 1934The distribution of Rotifera on Mount Desert Island, Part V. A new species of Synchaetidae and new species of Asplanchnidae,Trichocercidae and BrachionidaeAmerican Museum Novitates700116Google Scholar
  22. Ridley, M. 1986Evolution and classification: the reformation of cladismLongman NY201Google Scholar
  23. Ruttner-Kolisko, A. 1974Planktonic Rotifers: biology and taxonomyDie Binnengewässer (Supplement)261146Google Scholar
  24. Salt, G. W., Sabbadini, G. F., Commins, M. L. 1978Trophi morphology relative to food habits in six species of rotifers (Asplanchnidae)Transactions of the American Microscopical Society97469485Google Scholar
  25. Segers, H. 2002The nomenclature of the Rotifera: annotated checklist of valid family- and genus-group namesJournal of Natural History36631640Google Scholar
  26. Shiel, R. J., Koste, W. 1985New species and new records of Rotifera (Aschelminthes) from Australian watersTransaction of the Royal Society of Australia109115Google Scholar
  27. Sudzuki, M. 1964New systematical approach to the Japanese planktonic RotatoriaHydrobiologia231124CrossRefGoogle Scholar
  28. Swofford, D. L., 2002. PAUP* - Phylogenetic Analysis Using Parsimony (* and Other Methods). Ver. 4 [Computer software]. Sinauer Associates, Sunderland, MA [with periodic on-line updates]Google Scholar
  29. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4676–4680Google Scholar
  30. White, T. J., Bruns, J., Lee, S., Taylor, J. 1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneticsInnis, M.,Gelfand, D.Sninsky, J.White, T. eds. PCR Protocols: A Guide to Methods and ApplicationsAcademic Press, IncSan DiegoGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Elizabeth J. Walsh
    • 1
  • Robert L. Wallace
    • 2
  • Russell J. Shiel
    • 3
  1. 1.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of BiologyRipon CollegeRiponUSA
  3. 3.The University of AdelaideAdelaideAustralia

Personalised recommendations