, Volume 564, Issue 1, pp 171–181 | Cite as

Oligochaete Assemblages in the Hyporheic Zone and Coarse Surface Sediments: Their Importance for Understanding of Ecological Functioning of Watercourses

  • Michel Lafont
  • Anne Vivier


The hyporheic zone and its interactions with coarse surface sediments is increasingly reported by aquatic ecologists because the water exchanges between surface and subsurface are important factors for the understanding of the ecosystem functioning. However, the hyproheic oligochaete assemblages have received less attention than other assemblages such as crustaceans. In addition, studies investigating the incidence of pollution in watercourses have mostly focused on the benthic zone and have neglected the hyporheic zone. Some examples are given from an unpolluted glacial river (Roseg), polluted plains rivers (Moselle, Rhône) and a protected wetland in an urbanized environment. The hyporheic zone kept the memory of past and present incidences of pollution, in particular when downwellings of polluted surface waters to the hyporheic zone predominated. The Active hydrologic Exchange Describers between surface and subsurface (AED oligochaete species) were the same in the glacial river Roseg, the rivers Rhône and Moselle and the urbanized wetland. The predominance of pollution-tolerant species like Limnodrilus hoffmeisteri was observed in polluted groundwater as well as in polluted surface coarse sediments. Moreover, the urbanized wetland exhibited a high species richness, suggesting that the hyporheic zone is a reservoir of species. The oligochaete communities enable biologists to simultaneously assess the pollution incidence, the permeability of coarse habitats, the water exchanges between surface and subsurface, and give an approximate measure of the metabolic activities in the sediments. Consequently, the simultaneous study of surface and hyporheic oligochaete assemblages is of great interest when considering the ecological functioning of watercourses and the incidence of pollution inputs.


running waters coarse sediments hyporheic zone Oligochaeta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afnor, 1992. Détermination de l’indice biologique global normalisé (IBGN). NF T 90-350.Google Scholar
  2. Afnor, 2000. Détermination de l’Indice biologique Diatomées (IBD). NF T 90-354.Google Scholar
  3. Afnor, 2002. Détermination de l’indice oligochètes de bioindication des sédiments (IOBS). NF T 90-390.Google Scholar
  4. Bencala, K. E. 1993A perspective on stream-catchment connectionsJournal of the North American Benthological Society124447CrossRefGoogle Scholar
  5. Bird, G. J. 1982Distribution, life cycle and population dynamics of the aquatic enchytraeid Propappus volki (Oligochaeta) in an English chalkstreamHolarctic Ecology56775Google Scholar
  6. Botea, F. R. 1963Contributii la studiul răspîndirii olgochetelor limicole din R.P.RValea MotruluiIV401409Google Scholar
  7. Bou, C. 1977Conséquences écologiques de l’extraction des alluvions récentes dans le cours moyen du TarnBulletin d’Ecologie8435444Google Scholar
  8. Bou, C., Rouch, R. 1967Un nouveau champ de recherches sur la faune aquatique souterraineComptes Rendus de l’Académie des Sciences, Paris265369370Google Scholar
  9. Boulton, A. J. 2000River ecosystem health down under: assessing ecological conditions in riverine groundwater zones in AustraliaEcosystem Health6108118CrossRefGoogle Scholar
  10. Boulton, A. J., Humphreys, W. F., Eberhard, S. M. 2003Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservationAquatic Ecosystem Health and Management64154CrossRefGoogle Scholar
  11. Bretschko, G. 1991Bed sediments, groundwater and stream limnologyVerhandlungen Internationale Vereiningung für Theorische und Angewandte Limnologie2419571960Google Scholar
  12. Brunke, M., Gonser, T. 1997The ecological significance of exchange processes between rivers and groundwaterFreshwater Biology37133CrossRefGoogle Scholar
  13. Camus, J. C., Lafont, M. 1994Etude de la vulnérabilité à la pollution du champ captant de Crépieux-Charmy (69)Utilisation des oligochètes et des microcrustacésCemagref48Google Scholar
  14. Claret, C., Marmonier, P., Dole-Olivier, M. J., Creuzé des Châtelliers, M., Boulton, A. J., Castella, E. 1999A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinitiesArchiv für Hydrobiologie145385403Google Scholar
  15. Danielopol, D. L. 1984Ecological investigations on the alluvial sediments of the Danube in the Vienna area – a phreatobiological projectVerhandlungen Internationale Vereiningung für Theorische und Angewandte Limnologie2217551761Google Scholar
  16. Danielopol, D. L. 1989Groundwater fauna associated with riverine aquifersJournal of the North American Benthological Society81835CrossRefGoogle Scholar
  17. Datry, T., Hervant, F., Malard, F., Vitry, L., Gibert, J. 2003Dynamics and adaptive responses of invertebrates to suboxia in contaminated sediments of a stormwater infiltration basinArchiv für Hydrobiologie156339359CrossRefGoogle Scholar
  18. Dole, M. J. 1983Le domaine aquatique souterrain de la plaine alluviale du Rhône à l’est de Lyon. I: diversité hydrologique and biocénotique de trois stations représentatives de la dynamique fluvialeVie and Milieu33219229Google Scholar
  19. Dumnicka, E. 1986Naididae (Oligochaeta) from subterranean waters of West Indian islands. Distribution, taxonomic remarks and description of a new speciesBijdragen tot de Dierkunde56267281Google Scholar
  20. Durbec, A., Lafont, M., Camus, J. C. 1992 Etude de la vulnérabilité à la pollution du champ captant de Chasse-sur-Rhône (38)BurgéapCemagref16Google Scholar
  21. Fellows, C. S., Valett, H. M., Dahm, C. N. 2001Whole-stream metabolism in two montane streams: contribution of the hyporheic zoneLimnology and Oceanography46523531CrossRefGoogle Scholar
  22. Ferrarese, U., Sambugar, B. 1976Ricerche sulla fauna interstiziale iporreica dell’Adige in relazione allo stato di inquinamento del FiumeRivista di Idrobiologia.1547127Google Scholar
  23. Gaschignard, O. 1984Impact d’une crue sur les invertébrés benthiques d’un bras mort du RhôneVerhandlungen Internationale Vereiningung für Theorische und Angewandte Limnologie2219972001Google Scholar
  24. Gibert, J., 2001. Basic attributes of groundwater ecosystems. In Griebler, C., D. L. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology. European Communities, 39–52.Google Scholar
  25. Giere, O. 1993Meiobenthology. The microscopic fauna in aquatic sedimentsSpringer-VerlagBerlin Heidelberg328Google Scholar
  26. Griebler, C., D. L. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom, 2001. Groundwater Ecology, European Communities, 413 pp.Google Scholar
  27. Gibert, J., Dole-Olivier, M. J., Marmonier, P., Vervier, P. 1990Surface water/groundwater ecotonesNaiman, R. J.Décamps, H. eds. Ecology and Management of Aquatic-Terrestrial Ecotones 4UNESCO and Parthenon Publishing GroupParis199225Google Scholar
  28. Hancock, P. J. 2002Human impacts on the stream-groundwater exchange zoneEnvironmental Management29763781CrossRefPubMedGoogle Scholar
  29. Holmes, R. M. 2000The importance of ground water to stream ecosystem functionJones, J. B.Mulholland, P. J. eds. Streams and Ground WatersAcademic PressSan Diego137148Google Scholar
  30. Hynes, H. B. N. 1983Groundwater and stream ecologyHydrobiologia1009399CrossRefGoogle Scholar
  31. Jones, J. B., Mulholland, P. J. 2000Streams and Ground WatersAcademic PressSan Diego425Google Scholar
  32. Juget, J. 1980Aquatic oligochaeta of the Rhône-Alpes area: Current research prioritiesBrinkhurst, R. O.Cook, D. G. eds. Aquatic Oligochaete BiologyPlenum PressNew York and London241251Google Scholar
  33. Juget, J. 1984Oligochaeta of the epigean and underground fauna of the alluvial plain of the French upper Rhône (biotypological try)Hydrobiologia115175182CrossRefGoogle Scholar
  34. Juget, J. 1987Contribution to the study of Rhyacodrilinae (Tubificidae, Oligochaeta), with the description of two new stygobiont species from the alluvial plain of the French Upper Rhône, Rhyacodrilus amphigenus, sp. n. and Rhizodriloides phreaticola, g. n., sp. nHydrobiologia155107118CrossRefGoogle Scholar
  35. Juget, J., Dumnicka, E. 1986Oligochaeta (incl. Aphanoneura) des eaux souterraines continentalesBotosaneanu, L. eds. Stygofauna mundiE. J. BrillLeiden234244Google Scholar
  36. Juget, J., Lafont, M. 1994Theoretical habitat templets, species traits, and species richness: aquatic Oligochaetes in the Upper Rhône River and its floodplainFreshwater Biology31327340Google Scholar
  37. Ladle, M., 1971. Studies on the biology of oligochaetes from the phreatic water of an exposed gravel bed. International Journal of Speleology 3: 311–316 +4 Plates (100–103).Google Scholar
  38. Lafont, M. 1989Contribution à la gestion des eaux continentales: utilisation des oligochètes comme descripteurs de l’état biologique et du degré de pollution des eaux et des sédimentsThèse de Doctorat ès SciencesUniversité Lyon I403Google Scholar
  39. Lafont, M. 2001A conceptual approach to the biomonitoring of freshwater: the Ecological Ambience SystemJournal of Limnology601724Google Scholar
  40. Lafont, M., Durbec, A. 1990Essai de description biologique des interactions entre eau de surface et eau souterraine: application à l’évaluation de la vulnérabilité d’un aquifère à la pollution d’un fleuveAnnales de Limnologie26119129CrossRefGoogle Scholar
  41. Lafont, M., Malard, F. 2001Oligochaete communities in the hyporheic zone of a glacial river, the Roseg River, SwitzerlandHydrobiologia4637581CrossRefGoogle Scholar
  42. Lafont, M., Durbec, A., Ille, C. 1992Oligochaete worms as biological describers of the interactions between surface and groundwater: a first synthesisRegulated Rivers, Research and Management76573Google Scholar
  43. Lafont, M., Camus, J. C., Rosso, A. 1996Superficial and hyporheic oligochaete communities as indicators of pollution and water exchange in the River Moselle, FranceHydrobiologia334147155CrossRefGoogle Scholar
  44. Lafont, M., Camus, J. C., Fournier, A., Sourp, E. 2001A practical concept for the ecological assessment of aquatic ecosystems: application on the river Dore in FranceAquatic Ecology35195205CrossRefGoogle Scholar
  45. Lafont, M., Vivier, A., Nogueira, S., Namour, P., Breil, P. 2006Surface and hyporheic Oligochaete assemblages in a French suburban streamHydrobiologia565183193Google Scholar
  46. Malard, F., 2001. Groundwater contamination and ecological monitoring in a mediterranenan karst ecosystem in southern France. In Griebler C., D. L. Danielopol, J. Gibert, H. P. Nachtnebel & J. Notenboom (eds), Groundwater Ecology. European Communities, 183–194.Google Scholar
  47. Malard, F., Tockner, K., Ward, J. V. 1999Shifting dominance of subcatchment water sources and flow paths in a glacial floodplain (Val Roseg, Switzerland)Arctic, Antarctic, and Alpine Research3135150CrossRefGoogle Scholar
  48. Malard, F., Lafont, M., Burgherr, P., Ward, J. V. 2001A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial riverArctic, Antarctic, and Alpine Research33457466CrossRefGoogle Scholar
  49. Malard, F., Tockner, K., Dole-Olivier, M. J., Ward, J. V. 2002A landscape perspective of surface-subsurface hydrological exchanges in river corridorsFreshwater Biology47621640CrossRefGoogle Scholar
  50. Malard, F., Galassi, D., Lafont, M., Doledec, S., Ward, J. V. 2003Longitudinal pattern of invertebrates in the hyporheic zone of a glacial riverFreshwater Biology48117CrossRefGoogle Scholar
  51. McElravy, E. P., Resch, V. 1991Distribution and seasonal occurrence of the hyporheic fauna in a northern California streamHydrobiologia220233246Google Scholar
  52. Mermillod-Blondin, F., Creuzé des Châtelliers, M., Gérino, M. 2003Effects of the interaction between tubificid worms on the functioning of hyporheic sediments: an experimental study in sediment columnsArchiv für Hydrobiologie156203223CrossRefGoogle Scholar
  53. Nalepa, T. F., Robertson, A. 1981Screen mesh size affects estimates of macro- and meio-benthos abundance and biomass in the Great LakesCanadian Journal of Fisheries and Aquatic Sciences3810271034Google Scholar
  54. Rouch, R., Danielopol, D. L. 1987L’origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation activeStygologia3345372Google Scholar
  55. Sambugar, B., Giani, N., Martinez-Ansemil, E. 1999Groundwater oligochaetes from Southern-Europe. Tubificidae with marine phyletic affinities: new data with description of a new species, review and consideration on their originMémoires de BiospéologieXXVI107116Google Scholar
  56. Von, P. 1982aTurbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. III. Die Taxozönosen der Turbellarien und Oligochaeten in Flieβgewässern – eine synökologische GliederungArchiv für Hydrobiologie/Supplementum62191253Google Scholar
  57. Von, P. 1982bTurbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. IV. Allgemeine Grundlagen der Verbreitung von Turbellarien und Oligochaeten in FlieβgewässernArchiv für Hydrobiologie/Supplementum62254290Google Scholar
  58. Solbe, J. F. 1975AnnelidaCurds, C. R.Hawkes, H. A. eds. Ecological Aspect of Used Water TreatmentAcademic PressLondon305335Google Scholar
  59. Solbe, J. F., Ripley, P. G., Tomlinson, T. G. 1974The effects of temperature on the performance of experimental percolating filters with and without mixed macro-invertebrate populationsWater Research8557573CrossRefGoogle Scholar
  60. Stanley, E. H., Jones, J. B. 2000Surface-subsurface interactions: past, present, and futureJones, J. B.Mulholland, P. J. eds. Streams and Ground WatersAcademic PressSan Diego405417Google Scholar
  61. Strayer, D., Bannon-O’Donnell, E. 1988Aquatic Microannelids (Oligochaeta and Aphanoneura) of undergroundwaters of Southeastern New-YorkThe American Midland Naturalist119327335CrossRefGoogle Scholar
  62. Triska, F. J., Duff, J. H., Avanzino, R. J. 1990Influence of exchange flow between the channel and hyporheic zone on NO 3 production in a small mountain streamCanadian Journal of Fisheries and Aquatic Sciences1120992111CrossRefGoogle Scholar
  63. Valett, H. M., Hakenkamp, C. C., Boulton, A. J. 1993Perspectives on the hyporheic zone: integrating hydrology and biologyIntroduction. Journal of the North American Benthological Society124043CrossRefGoogle Scholar
  64. Vervier, P., Gibert, J., Marmonier, P., Dole-Olivier, M. J. 1992A perspective on the permeability of the surface freshwater-groundwater interfaceJournal of the North American Benthological Society1193102CrossRefGoogle Scholar
  65. Ward, J. V. 1989The four-dimensional nature of lotic ecosystemsJournal of the North American Benthological Society828CrossRefGoogle Scholar
  66. Ward, J. V., Palmer, M. A. 1994Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systemsHydrobiologia287147156CrossRefGoogle Scholar
  67. Weigelhoffer, G., Waringer, J. 2003Vertical distribution of benthic macroinvertebrates in riffles versus deep runs with differing contents of fine sediments (Weidlingbach, Austria)International Revue of Hydrobiology88304313CrossRefGoogle Scholar
  68. White, D. S. 1993Perspectives on defining and delineating hyporheic zonesJournal of the North American Benthological Society126169CrossRefGoogle Scholar
  69. Williams, N. V., Taylor, H. M. 1968The effect of Psychoda alternata (Say.) (Diptera) and Lumbricillus rivalis (Levinsen) (Enchytraeidae) on the efficiency of sewage treatment in percolating filtersWater Research2139150CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Cemagref, Biology Research UnitLyon, Cedex 09France
  2. 2.ENGEES, SHU LaboratoryStrasbourgFrance

Personalised recommendations