Advertisement

Hydrobiologia

, Volume 561, Issue 1, pp 119–130 | Cite as

Relationships Between Environmental Variables and Benthic Diatom Assemblages in California Central Valley Streams (USA)

  • Yangdong Pan
  • Brian H. Hill
  • Peter Husby
  • Robert K. Hall
  • Philip R. Kaufmann
Article

Abstract

This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers in the California Central Valley ecoregion. Benthic diatoms, water quality, and physical habitat conditions were characterized from 53 randomly selected sites. The stream sites were characterized by low mid-channel canopy cover and high channel substrate embeddedness. The waters at these sites were enriched with minerals and turbidity varied from 1.3 to 185.0 NTU with an average of 13.5 NTU. A total of 249 diatom taxa were identified. Average taxa richness was 41 with a range of 7–76. The assemblages were dominated by Staurosira construens (11%), Epithemia sorex (8%), Cocconeis placentula (7%), and Nitzschia amphibia (6%). Multivariate analyses (cluster analysis, classification tree analysis, and canonical correspondence analysis) all showed that benthic diatom assemblages were mainly affected by channel morphology, in-stream habitat, and riparian conditions. The 1st CCA axis negatively correlated with mean wetted channel width (r = −0.66) and thalweg depth (r = −0.65) (Table 4). The 2nd axis correlated with % coarse substrates (r=0.60). Our results suggest that benthic diatoms can be used for assessing physical habitat alterations in streams.

Keywords

canonical correspondence analysis cluster analysis UPGMA TWINSPAN classification tree analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggs, B. J. F. 1996Patterns in benthic algae of streamsStevenson, R. J.Bothwell, M. L.Lowe, R. L. eds. Algal EcologyAcademic PressSan Diego, California3151Google Scholar
  2. Biggs, B. J. F., Stevenson, R. J., Lowe, R. L. 1998A habitat matrix conceptual model for stream periphytonArchive für Hydrobiologie1432156Google Scholar
  3. Bothwell, M. L. 1989Phosphorus-limited growth dynamics of lotic periphytic diatom communities: areal biomass and cellular growth rate responsesCanadian Journal of Fisheries and Aquatic Sciences4612931301Google Scholar
  4. Brown, L. R., May, J. T. 2000Macroinvertebrate assemblages on woody debris and their relations with environmental variables in the Lower Sacramento and San Joaquin River drainages, CaliforniaEnvironmental Monitoring and Assessment64311329CrossRefGoogle Scholar
  5. Clark, L. A., Pregibon, D. 1993Tree-based modelsChambers, J. M.Hastie, T. J. eds. Statistical Models in SWadsworth & BrooksPacific Grove, CA377420Google Scholar
  6. Dodds, W. K., Jones, J. R., Welch, E. B. 1998Suggested classification of stream trophic state: distribution of temperate stream types by chlorophyll, total nitrogen, and phosphorusWater Resources Research3214551462Google Scholar
  7. Dodds, W. K. 2003Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface watersJournal of North American Benthological Society22171181Google Scholar
  8. Dufrene, M., Legendre, P. 1997Species assemblages and indicator species: the need for a flexible asymmetrical approachEcological Monographs67345366Google Scholar
  9. Griffith, M. B., Husby, P., Hall, R. K., Kaufmann, P. R., Hill, B. H. 2003Analysis of macroinvertebrate assemblages in relation to environmental gradients among lotic habitats of California’s Central ValleyEnvironmental Monitoring and Assessment82281309CrossRefPubMedGoogle Scholar
  10. Grime, J. P. 1977Evidence for the existence of three primary strategies in plants and its relevance to ecological theoryAmerican Naturalists11111691194Google Scholar
  11. Hall, R. K., Olsen, A., Stevens, D., Rosenbaum, B., Wolinsky, G., Husby, P., Heggem, D. 2000EMAP design and river reach file 3 (RF3) as a sample frame in the Central Valley, CaliforniaEnvironmental Monitoring and Assessment646980Google Scholar
  12. Hill, M. O., Bunce, R. G. H., Shaw, M. W. 1975Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewoods in ScotlandJournal of Ecology63597613Google Scholar
  13. Kaufmann, P. R., Robison, E. G. 1998Physical habitat characterizatonLazorchak, J. M.Klemm, D. J.Peck, D. V. eds. Environmental Monitoring and Assessment Program – Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. Office of Research and Develop., U.S. Envir. Protection AgencyWashington, D.C77118EPA/620/R-94/004FGoogle Scholar
  14. Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., Peck, D. V. 1999Quantifying Physical Habitat in Wadeable Streams. EPA 620/R-99/003. Environmental Monitoring and Assessment ProgramU.S. Environmental Protection AgencyCorvallis, ORGoogle Scholar
  15. Krammer, K., Lange-Bertalot, H. 1986Bacillariophyceae. 1.Teil: NaviculaceaeVEB Gustav Fisher VerlagJenaGoogle Scholar
  16. Krammer, K., Lange-Bertalot, H. 1988Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, SurirellaceaeVEB Gustav Fisher VerlagJenaGoogle Scholar
  17. Krammer, K., Lange-Bertalot, H. 1991aBacillariophyceae. 3 Teil: Centrales, Fragilariaceae, Eunotiaceae, AchnanthaceaeVEB Gustav Fisher VerlagJenaGoogle Scholar
  18. Krammer, K., Lange-Bertalot, H. 1991bBacillariophyceae. 4 Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und GomphonemaVEB Gustav Fisher VerlagJenaGoogle Scholar
  19. Kroeger, S., Fensin, E., Lynch, K., Vander Borgh, M. 1999United States Water Quality Programs that Use Algae as a Biological Assessment ToolNorth Carolina Division of Water QualityRaleigh, NCGoogle Scholar
  20. Kutka, F. J., Richards, C. 1996Relating diatom assemblage structure to stream habitat qualityJournal of North American Benthological Society15469480Google Scholar
  21. Leland, H. V., Brown, L. R., Mueller, D. K. 2001Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factorsFreshwater Biology4611391167CrossRefGoogle Scholar
  22. MathSoft2000S-Plus: Guide to Statistics. Data Analysis Products DivisionMathSoft, Inc.Seattle, Washington875 Google Scholar
  23. McCune, B., Mefford, M. J. 1999PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software DesignGleneden BeachOregon, USAGoogle Scholar
  24. Miller, A. R., Lowe, R. L., Rotenberry, J. T. 1987Microsuccession of diatoms on sand grainsJournal of Ecology75693709Google Scholar
  25. Mount, J. F. 1995California Rivers and Streams: The Conflict between Fluvial Process and Land UseUniversity of California PressBerkeley, CAGoogle Scholar
  26. Patrick, R., Reimer, C. W. 1966The Diatoms of the United States. Vol. 1. Monographs of the Academy of Natural Sciences of Philadelphia, No.13, PhiladelphiaPennsylvaniaUSAGoogle Scholar
  27. Patrick, R., Reimer, C. W. 1975The Diatoms of the United States. Vol. 1. Part 1. Monographs of the Academy of Natural Sciences of Philadelphia, No.13, PhiladelphiaPennsylvaniaUSAGoogle Scholar
  28. Saiki, M. K. 1984Environmental conditions and fish faunas in low elevation rivers on the irrigated San Joaquin Valley Floor, CaliforniaCalifornia Department of Fish & Game70145157Google Scholar
  29. Stevens, D. L.,Jr., Olsen, A. R. 1999Spatially restricted surveys over time for aquatic resourcesJournal of Agricultural, Biological, and Environmental Statistics4415428Google Scholar
  30. Stevens, D. L.,Jr. 1997Variable density grid-based sampling designs for continuous spatial populationsEnvironmetrics816795CrossRefGoogle Scholar
  31. Stevenson, R. J. 1997Scale-dependent determinants and consequences of benthic algal heterogeneityJournal of North American Benthological Society16248262Google Scholar
  32. Stevenson, R. J. & Y. Pan, 1999. Monitoring environmental changes using diatoms in stream and river communities. In Stoermer E. F. & J. P. Smol (eds), The Diatoms: Applications to Environmental and Earth Sciences. Cambridge University Press: 11–40Google Scholar
  33. Stevenson, R. J., Bahls, L. L. 1999Periphyton protocols. Rapid bioassessment protocols for use in Wadeable Streams and Rivers: PeriphytonBarbour, M. T.Gerritsen, J.Snyder, B. D. eds. Benthic Macroinvertebrates, and Fish2United States Environmental Protection AgencyWashington, DC6-1622EPA 841-B-99–002Google Scholar
  34. ter Braak, C. J. F. 1986Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysisEcology6716671679Google Scholar
  35. ter Braak, C. J. F., Smilauer, P. 1998CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4)Microcomputer PowerIthaca, NYGoogle Scholar
  36. USEPA (US Environmental Protection Agency)1987Handbook of Methods for Acid Deposition Studies: Laboratory Analysis for Surface Water ChemistryOffice of Research and Development, US Environmental Protection AgencyWashington, DCEPA 600/4-87/026Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yangdong Pan
    • 1
  • Brian H. Hill
    • 2
  • Peter Husby
    • 3
  • Robert K. Hall
    • 4
  • Philip R. Kaufmann
    • 5
  1. 1.Environmental Science and ResourcesPortland State UniversityPortlandUSA
  2. 2.USEPA, ORD, NHEERL/MEDDuluthUSA
  3. 3.USEPARichmondUSA
  4. 4.USEPASan FranciscoUSA
  5. 5.USEPA, ORD, NHEERL/WEDCorvallisUSA

Personalised recommendations