Advertisement

Hydrobiologia

, Volume 556, Issue 1, pp 85–98 | Cite as

Responses of Estuarine Benthic Invertebrates to Sediment Burial: The Importance of Mobility and Adaptation

  • Elizabeth K. Hinchey
  • Linda C. Schaffner
  • Cara C. Hoar
  • Bruce W. Vogt
  • Lauren P. Batte
Primary Research Paper

Abstract

Estuarine benthic organisms are frequently subjected to disturbance events caused by hydrodynamic processes that disrupt and move the sediment in which the animals reside, however the mechanisms by which physical disturbance processes affect infaunal and epifaunal populations and communities remain poorly resolved. The responses of three infaunal and two epifaunal estuarine benthic species to sediment disturbance (burial) were compared in laboratory experiments. Overburden stress (kPa) was calculated to quantify the force exerted on organisms by sediment burial for 6 d. At the levels tested (0–16 kPa), increasing overburden stress did not significantly decrease survival or growth of juvenile burrowing bivalves, Macoma balthica (Linnaeus). Survival of juveniles and adults of the tubiculous polychaete Streblospio benedicti (Webster) and neonates of the burrow-forming amphipod Leptocheirus plumulosus (Shoemaker) declined exponentially with increasing overburden stress. The mean S. benedicti survival rate was 4% of the control at an overburden stress of ≈4 kPa, while an overburden stress of 12 kPa was necessary to comparably reduce survival of L. plumulosus. At the low levels of overburden stress used in the experiments with epifauna (≤0.2 kPa), juvenile oyster Crassostrea virginica (Gmelin) did not suffer significant mortality at an overburden stress of 0.1 kPa. In contrast, the epifaunal tunicate Molgula manhattensis (DeKay) exhibited significant mortality when partially (one or two siphons exposed) or completely buried under sediment with an overburden stress of 0.2 kPa. Species-specific response to burial varied as a function of motility, living position, and inferred physiological tolerance of anoxic conditions while buried. We conclude that some benthic species exhibit mechanical and possibly physiological adaptations that may allow them to survive deposition events of the magnitude commonly encountered in estuarine environments.

Keywords

burial epifauna infauna overburden stress sediment disturbance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. 1990Categorical Data AnalysisJohn Wiley & SonsNew YorkGoogle Scholar
  2. Althy, L. F. 1930Density, porosity and compaction of sedimentary rocksBulletin of the American Association of Petroleum Geologists1124Google Scholar
  3. Barnes, R. D. 1987Invertebrate ZoologyHarcourt Brace Jovanovich, IncOrlando, FloridaGoogle Scholar
  4. Beukema, J. J., Meehan, B. W. 1985Latitudinal variation in linear growth and other shell characteristics of Macoma balthica Marine Biology902733CrossRefGoogle Scholar
  5. Blundon, J. A., Kennedy, V. S. 1982Refuges for infaunal bivalves from blue crab, Callinectes sapidus (Rathburn), predation in Chesapeake BayJournal of Experimental Marine Biology and Ecology656781Google Scholar
  6. Bock, M. J., Miller, D. C. 1995Storm effects on particulate food resources on an intertidal sandflatJournal of Experimental Marine Biology and Ecology18781101CrossRefGoogle Scholar
  7. Bonsdorff, E., Norkko, A., Sandburg, E. 1995Structuring zoobenthos: the importance of predation, siphon cropping, and physical disturbanceJournal of Experimental Marine Biology and Ecology192125144CrossRefGoogle Scholar
  8. Brenchley, G. A. 1982Mechanisms of spatial competition in marine soft bottom communitiesJournal of Experimental Marine Biology and Ecology601733CrossRefGoogle Scholar
  9. Brusca, R. C., Brusca, G. J. 1990InvertebratesSinauer Associates, IncSunderland, MassachusettsGoogle Scholar
  10. Carey, D. A. 1987Sedimentological effects and palaeoecological implications of the tube-building polychaete Lanice conchilega PallasSedimentology344966Google Scholar
  11. Carey, D. A. 1983Particle resuspension in the benthic boundary layer induced by flow around polychaete tubesCanadian Journal of Fisheries and Aquatic Sciences40 (Suppl. 1)301308Google Scholar
  12. Chandrasekara, W. U., Frid, C. L. J. 1998A laboratory assessment of the survival and vertical movement of two epibenthic gastropod species, Hydrobia ulvae (Pennant) and Littorina littorea (Linnaeus), after burial in sedimentJournal of Experimental Marine Biology and Ecology221191207CrossRefGoogle Scholar
  13. Dellapenna, T. M., Kuehl, S. A., Schaffner, L. C. 1998Seabed mixing and particle residence times in biologically and physically dominated estuarine systems: a comparison of lower Chesapeake Bay and the York River subestuaryEstuarine, Coastal and Shelf Science46777795CrossRefGoogle Scholar
  14. Diaz, R. J., Rosenberg, R. 1995Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofaunaOceanography and Marine Biology Annual Review33245303Google Scholar
  15. Diaz, R. J., Schaffner, L. C. 1990The functional role of estuarine benthosHaire, M.Krome, E. C. eds. Perspectives on the Chesapeake Bay, 1990. Advances in Estuarine SciencesChesapeake Research ConsortiumGloucester Point, Virginia2556Rpt. No. CBP/TRS41/90Google Scholar
  16. Dries, R. R., Theede, H. 1974Sauerstoffmangelresistenz mariner bodenevertebraten aus der westlichen OstseeMarine Biology25327333CrossRefGoogle Scholar
  17. Eckman, J. E. 1985Flow perturbation by a protruding animal tube affects sediment bacterial recolonizationJournal of Marine Research43419435CrossRefGoogle Scholar
  18. Edgar, G. J., Barrett, N. S. 2000Effects of catchment activities on macrofauna assemblages in Tasmanian estuariesEstuarine, Coastal and Shelf Science50639654CrossRefGoogle Scholar
  19. Emerson, C. W. 1989Wind stress limitation of benthic secondary production in shallow, soft-sediment communitiesMarine Ecology Progress Series536577Google Scholar
  20. Fauchald, K 1977The polychaete worms: definitions and keys to the orders, families and generaNatural History Museum of Los Angeles County, Science Series281190Google Scholar
  21. Friedman, G. M., Sanders, J. M. 1978Principles of SedimentologyJohn Wiley & SonsNew YorkGoogle Scholar
  22. Gaston, G. R. 1987Benthic polychaeta of the Middle Atlantic Bight: feeding and distributionMarine Ecology Progress Series36251262Google Scholar
  23. Geyer, W. R. 1993The importance of suppression of turbulence by stratification on the estuarine turbidity maximumEstuaries16113125Google Scholar
  24. Hall, S. J. 1994Physical disturbance and marine benthic communities: life in unconsolidated sedimentsOceanography and Marine Biology Annual Review32179239Google Scholar
  25. Hagerman, L. 1998Physiological flexibility: a necessity for life in anoxic and sulphidic habitatsHydrobiologia375/376241254CrossRefGoogle Scholar
  26. Hinchey, E. K., 2002. Organism–sediment interactions: the role of seabed dynamics in structuring the mesohaline York River macrobenthic community. Ph.D. Dissertation, School of Marine Science, The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, Virginia.Google Scholar
  27. Holland, A. F., Shaughenessy, A. T., Hiegel, M. H. 1987Long-term variation in mesohaline Chesapeake Bay macrobenthos: spatial and temporal patternsEstuaries10227245Google Scholar
  28. Jumars, P. A., Nowell, A. R. M. 1984Fluid and sediment dynamic effects on marine benthic community structureAmerican Zoologist244555Google Scholar
  29. Kniskern, T. A., Kuehl, S. A. 2003Spatial and temporal variability of physical and biological mixing in the York River subestuaryEstuarine, Coastal and Shelf Science583755CrossRefGoogle Scholar
  30. Kranz, P. M. 1974The anastrophic burial of bivalves and its paleological significanceJournal of Geology82237265CrossRefGoogle Scholar
  31. Lenihan, H. S. 1999Physical–biological coupling on oyster reefs: how habitat structure influences individual performanceEcological Monographs69251275Google Scholar
  32. Levin, L. A., Leithold, E. L., Gross, T. F., Huggett, C. L., DiBacco, C. 1994Contrasting effects of substrate mobility on infaunal assemblages inhabiting two high-energy settings on Fieberling GuyotJournal of Marine Research52489522CrossRefGoogle Scholar
  33. Levinton, J. S. 1991Variable feeding behavior in three species of Macoma (Bivalvia: Tellinacea) as a response to water flow and sediment transportMarine Biology110375383CrossRefGoogle Scholar
  34. Llansó, R. J. 1991Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete Streblospio benedicti (Webster)Journal of Experimental Marine Biology and Ecology153165178Google Scholar
  35. Luckenbach, M. W. 1986Sediment stability around animal tubes: the roles of hydrodynamic processes and biotic activityLimnology and Oceanography31779787CrossRefGoogle Scholar
  36. MacKenzie, C. L. 1983To increase oyster production in the northeastern United StatesMarine Fisheries Review45123Google Scholar
  37. Marsh, A. G., Tenore, K. K. 1990The role of nutrition in regulating the population dynamics of opportunistic, surface deposit feeders in a mesohaline communityLimnology & Oceanography35710724CrossRefGoogle Scholar
  38. Maurer, D., Keck, R. T., Tinsman, J. C., Leathem, W. A., Wethe, C., Lord, C., Church, T. M. 1986Vertical migration and mortality of marine benthos in dredged material: a synthesisInternational Revue der Gesampten Hydrobiologia715063Google Scholar
  39. Maurer, D., Keck, R. T., Tinsman, J. C., Leathem, W. A. 1980aVertical migration and mortality of benthos in dredged material- part I: MolluscaMarine Environmental Research4299319Google Scholar
  40. Maurer, D., Keck, R. T., Tinsman, J. C., Leathem, W. A. 1980bVertical migration and mortality of benthos in dredged material- part II: CrustaceaMarine Environmental Research5301317Google Scholar
  41. Miller, D. C., Muir, C. L., Hauser, O. A. 2002Detrimental effects of sedimentation on marine benthos: what can be learned from natural processes and rates?Ecological Engineering19211232CrossRefGoogle Scholar
  42. Miller, D. C., Block, M. J., Turner, E. J. 1992Deposit and suspension feeding in oscillatory flows and sediment fluxesJournal of Marine Research50489520CrossRefGoogle Scholar
  43. Miller, D. C., Jumars, P. A., Nowell, A. R. M. 1984Effects of sediment transport on deposit feeding: scaling argumentsLimnology and Oceanography2912021217Google Scholar
  44. Moore, D. W., Bridges, T. S., Gray, B. R., Duke, B. M. 1997Risk of ammonia toxicity during sediment bioassays with the estuarine amphipod Leptocheirus plumulosus Environmental Toxicology and Chemistry1610201027Google Scholar
  45. Nichols, J. A., Rowe, G. T., Hovey, C., Young, R. A. 1978In situ experiments on the burial of marine invertebratesJournal of Sedimentary Petrology48419425Google Scholar
  46. Nittrouer, C. A., Sternberg, R. W. 1981The formation of sedimentary strata in an allochthonous shelf environment: the Washington continental shelfMarine Geology42201232Google Scholar
  47. Norkko, A., Thrush, S. F., Hewitt, J. E., Cummings, V. J., Norkko,  J., Ellis, J. I., Funnell, G. A., Schultz, D., MacDonald, I. 2002Smothering of estuarine sandflats by terrigenous clay: the role of wind-wave disturbance and bioturbation in site-dependent macrofaunal recoveryMarine Ecology Progress Series2342341Google Scholar
  48. Ólaffson, E. B., Peterson, C. H., Ambrose, W. G. 1994Does recruitment limitation structure populations and communities of macroinvertebrates in marine soft sediments: the relative significance of pre- and post-settlement processesOceanography and Marine Biology Annual Review3265109Google Scholar
  49. Oliver, J. S., Slattery, P. N., Hulberg, L. W., Nybakken, J. W. 1980Relationships between wave disturbance and zonation of benthic invertebrate communities along a subtidal high-energy beach in Monterey Bay, CaliforniaFishery Bulletin (US)78437454Google Scholar
  50. Pickett, S. T. A., White, P. S. 1985The Ecology of Natural Disturbance and Patch DynamicsAcademic PressLondonGoogle Scholar
  51. Posey, M. H. 1986Changes in a benthic community associated with dense beds of a burrowing deposit feeder, Callianassa californiensis Marine Ecology Progress Series311522Google Scholar
  52. Rhoads, D. C. 1974Organism–sediment relations on the muddy sea floorOceanography and Marine Biology Annual Review12263300Google Scholar
  53. Rhoads, D. C., Yingst, J. Y., Ullman, W. J. 1978Sea floor stability in central Long Island Sound: Part I. Temporal changes in erodability of fine-grained sedimentsWiley, M. eds. Estuarine InteractionsAcademic PressNew York221244Google Scholar
  54. Richards, A. F., Hirst, T. J., Parks, J. M. 1974Bulk density-water content relationship in marine silts and claysJournal of Sedimentary Petrology4410041009Google Scholar
  55. Sagasti, A., Schaffner, L. C., Duffy, J. E. 2001Effects of periodic hypoxia on mortality, feeding and predation in an estuarine epifaunal communityJournal of Experimental Marine Biology and Ecology258257283PubMedCrossRefGoogle Scholar
  56. Sanford, L. P. 1992New sedimentation, resuspension, and burialLimnology & Oceanography3711641178CrossRefGoogle Scholar
  57. Schaffner, L. C., Dellapenna, T. M., Hinchey, E. K., Friedrichs, C. T., Neubauer, M. T., Smith, M. E., Kuehl, S. A. 2001Physical energy regimes, sea-bed dynamics and organism-sediment interactions along an estuarine gradientAller, J. Y.Woodin, S. A.Aller, R. C. eds. Organism–Sediment InteractionsUniversity of South Carolina PressColumbia, SC161182Google Scholar
  58. Schaffner, L. C., Diaz, R. J., Olsen, C. R., Larsen, I. L. 1987Faunal characteristics and sediment accumulation processes in the James River estuary, VirginiaEstuarine, Coastal and Shelf Science25211226CrossRefGoogle Scholar
  59. Seymour, B. R., Jeng, D. S., Hsu, J. R. C. 1996Transient soil response in a porous seabed with variable permeabilityOcean Engineering232746CrossRefGoogle Scholar
  60. Siebold, E., Berger, W. H. 1996The Sea Floor – an Introduction to Marine GeologySpringer-VerlagBerlinGoogle Scholar
  61. Sokal, R. R., Rohlf, F. J. 1981BiometryW. H. Freeman and CompanyNew YorkGoogle Scholar
  62. Sousa, W. P. 2001Natural disturbance and the dynamics of marine benthic communitiesBertness, M. D.Gaines, S. D.Hay, M. eds. Marine Community EcologySinauer AssociatesSunderland, Massachusetts85130Google Scholar
  63. Traykovski, P., R. Geyer & C. Sommerfield, 2004. Rapid sediment deposition and fine-scale strata formation in the Hudson estuary. Journal of Geophysical Research 109, F02004, doi:10.1029/2003JF000096.Google Scholar
  64. Warwick, R. M., Goss-Custard, J. D., Kirby, R., George, C. L., Pope, N. D., Rowden, A. A. 1991Static and dynamic environmental factors determining the community structure of estuarine macrobenthos in SW Britain: why is the Severn Estuary different?Journal of Applied Ecology28329345Google Scholar
  65. Warwick, R. M., Uncles, R. J. 1980Distribution of benthic macrofaunal associations in the Bristol Channel in relation to tidal stressMarine Ecology Progress Series397103Google Scholar
  66. Widdows, J. R., Newell, I. E., Mann, R. 1989Effects of hypoxia on survival, energy metabolism, and feeding of oyster larvae (Crassostrea virginica, Gmelin)Biological Bulletin177154166Google Scholar
  67. Wildish, D. J., Kristmanson, D. D. 1997Benthic Suspension Feeders and FlowCambridge University PressCambridge, United KingdomGoogle Scholar
  68. Wilson, W. H.,Jr. 1981Sediment-mediated interactions in a densely populated infaunal assemblage: the effects of the polychaete Abarenicola pacifica Journal of Marine Research39735848Google Scholar
  69. Woodin, S. A., Lindsay, S. M., Wethey, D. S. 1995Process-specific recruitment cues in marine sedimentary systemsBiological Bulletin1894958Google Scholar
  70. Zar, J. H. 1999Biostatistical Analysis4Prentice HallNew JerseyGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Elizabeth K. Hinchey
    • 1
  • Linda C. Schaffner
    • 1
  • Cara C. Hoar
    • 1
  • Bruce W. Vogt
    • 1
    • 2
  • Lauren P. Batte
    • 1
    • 3
  1. 1.School of Marine Science, College of William and MaryVirginia Institute of Marine ScienceGloucester PointUSA
  2. 2.National Oceanographic and Atmospheric Administration, National Ocean ServiceSilver SpringUSA
  3. 3.Office of Legislative AffairsNational Oceanographic and Atmospheric AdministrationWashington DCUSA

Personalised recommendations