Advertisement

Hydrobiologia

, Volume 554, Issue 1, pp 107–115 | Cite as

Growth and Production Rates of Loose-Lying and Attached Forms of the Red Algae Furcellaria lumbricalis and Coccotylus truncatus in Kassari Bay, the West Estonian Archipelago Sea

  • Georg Martin
  • Tiina Paalme
  • Kaire Torn
Article

Abstract

Two ecologically and morphologically distinct forms of Furcellaria lumbricalis and loose form of Coccotylus truncatus were experimentally tested to obtain information on the growth rates and influence of the habitat depth on their eco-physiological activity. Incubations were carried out in the area inhabited by a loose F. lumbricalisC. truncatus community in Kassari Bay of the West-Estonian Archipelago Sea, the NE Baltic Sea. During the incubation period (20.04–21.10.2002) loose forms of F. lumbricalis and C. truncatus showed similar dynamics of both growth rate of biomass and primary production while attached form of F.␣lumbricalis had, as a rule, significantly lower growth rate and primary production values. The highest eco-physiological activity was recorded from the shallowest incubation depth (4 m) for all three algal forms. All three tested algal forms had similar pattern of growth during the incubation period – highest growth rates were detected in spring and early summer while during the rest of the incubation period algal biomass was in a steady state when production balanced degradation processes.

Key words

attached and loose-lying Furcellaria lumbricalis Coccotylus truncatus growth rate primary production Baltic Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astok, V., Otsmann, M, Suursaar, Ü. 1999Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga caseHydrobiologia3931118CrossRefGoogle Scholar
  2. Austin, A. 1959Observations on Furcellaria fastigiata (L.) Lam. forma aegagrophila Reinke in Danish waters together with a note on other unattached algaeHydrobiologia14255277Google Scholar
  3. Birch, P. B., Gabrielson, J. O., Hamel, K. S. 1983Decomposition of Cladophora I. Field studies in the Peel-Harvey estuarine system, western AustraliaBotanica Marina26165171Google Scholar
  4. von Bröckel, K., 1975. Der Einfluss im pelagischen Ökosystem vor Boknis Eck (westl. Ostsee). Report SBF 95 University of Kiel 10Google Scholar
  5. Carpenter, S. R., Adam, M. S. 1979Effects of nutrients and temperature on decomposition of Myriophyllum spicatum L. in a hard-water eutrophic lakeLimnology and Oceanography24520528CrossRefGoogle Scholar
  6. Johansson, G. & B. K. Eriksson, 2002. Reattachment of macroalgal fragments enables population persistence in a suboptimal environment. In Johansson, G. Factors Affecting the Distribution of Rocky-Shore Macroalgae on the Swedish Coast. Morphological, Physiological, Reproductive and Denetic Aspects. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 759, Uppsala, 34Google Scholar
  7. Johansson, G., Snoeijs, P. 2002Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonationMarine Ecology Progress Series2446372Google Scholar
  8. Kiirikki, M. 1996Mechanisms affecting macroalgal zonation in the northern Baltic SeaEuropean Journal of Phycology31225232Google Scholar
  9. Kireeva, M. S. 1961Amount of Furcellaria fastigiata (Huds.) Lamour. in the Baltic Sea. (Area of Saaremaa and Hiiumaa Islands)Trudy Nautchno Issledovatelskogo Instituta Ribnogo Hosyaistva Soveta Narodnogo Hosyastva Latvyskoy Sovetskoy Respubliki3411417in RussianGoogle Scholar
  10. Kireeva, M. S., 1964. Aggregations of Unattached Red Algae in the Sea Areas of Soviet Union. In Resources of Marine Algae and their Use. Nauka, Moscow: 1–25. (in Russian)Google Scholar
  11. Kotta, J., Paalme, T., Martin, G., Mäkinen, A. 2000Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica International Review Hydrobiology85697705Google Scholar
  12. Kruk-Dowgiałło, L. & P. Cisewski, 1994. Zatoka Pucka. Możliwości rewaloryzacji. Institut Ochrony Środowiska, Warsawa, 178Google Scholar
  13. Lüning, K. 1981LightLobban, C. S.Wynne, M. J. eds. The Biology of SeaweedsBlackwell Scientific PublicationsOxford326355Google Scholar
  14. Mäkinen, A., Kääriä, J., Rajasilta, M. 1988Factors controlling the occurrence of Furcellaria lumbricalis (Huds.) Lamour. and Phyllophora truncata (Pallas) Zinova in the upper littoral of the Archipelago of SW FinlandKieler Meeresforschungen Sonderheft6140146Google Scholar
  15. Martin, G., T. Paalme & H. Kukk, 1996. Long-term dynamics of the commercial useable Furcellaria lumbricalisPhyllophora truncata community in Kassari Bay, West Estonian Archipelago, the Baltic Sea. In Proceedings of Polish-Swedish Symposium on Baltic coastal fisheries Resources and Management, 2–3 April 1996, Gdynia, Poland, 121–129Google Scholar
  16. Martin, G., Kukk, H. 1997aEnvironmental factors limiting phytobenthos communities in the Gulf of Riga and West-Estonian Archipelago SeaPhycologia3670Google Scholar
  17. Martin, G. & H. Kukk, 1997b. Unattached macroalgal communities – adaptation to unfavourable environmental conditions. In Recruitment Dynamics of Exploited Marine Populations: Physical-Biological Interactions, ICES International Symposium, Book of Abstracts: 94Google Scholar
  18. Martin, G. & H. Kukk, 1998. The structure of benthic littoral communities of the West-Estonian Archipelago area as a reflection of unique hydrodynamical conditions. In Brackish Water Ecosystems, ICES International Symposium, Book of Abstracts: 1–5Google Scholar
  19. Martin, G. & H. Kukk, 1999. Environmental factors forcing the dynamics and the structure of loose Furcellaria lumbricalisCoccotylus truncatus community in Kassari Bay, the inner sea of West-Estonian Archipelago, NE Baltic Sea. In Abstracts of 34th European Marine Biology Symposium: 6Google Scholar
  20. Nielsen, R., Kristiansen, A., Mathiesen, L., Mathiesen, H. 1995Distribution index of the benthic macroalgae of the Baltic Sea areaActa Botanica Fennica155170Google Scholar
  21. Suursaar, Ü., Astok, V., Otsmann, M. 1998The front of VäinameriEstonian Marine Institut Report Series92333Google Scholar
  22. Svedelius, N. 1901Studier öfter Östersjöns HafsalgfloraDissertationUpsala140(in Swedish)Google Scholar
  23. Trei, T. 1975Flora and vegetation in the coastal waters of Western Estonia MerentutkimuslaitJulk239348351Google Scholar
  24. Trei , T., 1976. Brown and red algae in the coastal waters of western Estonia. Zvaigzne, Riga: 1–87. (in Russian)Google Scholar
  25. Trei, T. 1978The physiognomy and structure of the sublittoral macrophyte communities in Kassari Bay (an area between the Isles of Hiiumaa and Saaremaa)Kieler Meeresforschungen Sonderheft4117121Google Scholar
  26. Wallentinus, I. 1978Productivity studies in Baltic macroalgaeBotanica Marina21365380CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Estonian Marine InstituteUniversity of TartuTallinnEstonia

Personalised recommendations