Advertisement

Hydrobiologia

, Volume 529, Issue 1–3, pp 59–70 | Cite as

Benthic heterotrophic flagellates in an Antarctic melt water stream

  • Désirée Dietrich
  • Hartmut Arndt
Article

Abstract

Investigations on the abundance, biomass and position of heterotrophic flagellates (HF) in the benthic microbial food web of a melt water stream on King George Island, Antarctic Peninsula, were undertaken during the Antarctic summer from 23rd December 1997 until 13th March 1998. Abundance and biomass of potential HF resources (picophotoautotrophic and non-photoautotrophic bacteria) as well as potential predators on HF (ciliates and meiofauna) were also investigated. HF abundance ranged from approximately 9 × 103 to 81 × 103 cells cm−3, values which fall into the same range as those found in lower latitudes. Numerically important benthic HF were euglenids, kinetoplastids, thaumatomastigids and especially chrysomonads. Most species identified have been shown to have a worldwide distribution. Abundance of the benthic ciliates ranged from 27 to 950 cells cm−3. Mean bacterial abundance was 1.9 × 107 and 5.2 × 108 cells cm−3 for picophotoautotrophic and non-photoautotrophic benthos, respectively. The well-developed microbial community was able to support the large number of nematods, gastotrichs, tardigrads and rotifers with abundances reaching more than 1000 individuals cm−3. The largest portion of heterotrophic biomass was formed by the meiofauna with a mean of 63 μg C cm−3, followed by that of the heterotrophic bacteria with 4.80 μg C cm−3. Picophotoautotrophic bacteria contributed a mean of 1.37 μg C cm−3. HF and ciliates mean biomass was 0.61 and 1.99 μg C cm−3, respectively, with the HF biomass comprising between <10 and 70% of the total protozoan biomass. The data obtained in this study identify the melt water stream as a hot-spot of heterotrophic microbial and meiofaunal activity during the austral summer. The HF in the melt water stream formed a diverse group in terms of taxa and potential feeding types. Chrysomonads, kinetoplastids, euglenids and thaumatomastigida were the most abundant taxa. A classification into feeding types identified an average of 34% of the total HF as bacterivorous while all others were able to utilise other, larger organisms as resources. Potential trophic interactions between HF and bacteria and higher trophic levels are discussed.

Keywords

polar King George Island microbial mat bacteria ciliates meiofauna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, A. S., D. M. McKnight, S. A. Spauling, C. M. Tate, G. H. Shupe, R. Edwards, E. D. Andrews & H. R. House, 1997. Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacila meltwater streams in Taylor Valley, Antarctica, Occasional Paper No. 51. Institute of Arctic and Alpine Research, Boulder, Colorado, 102 pp.Google Scholar
  2. Alongi, D. M. 1988Bacterial productivity and microbial biomass in tropical mangrove sedimentsMicrobial Ecology155979Google Scholar
  3. Alongi, D. M. 1991 Flagellates of benthic communities: characteristics and methods of studyPatterson, D. J.Larsen, J. eds. The Biology of Free-living Heterotrophic Flagellates. Systematics Association Special Volume 45Clarendon PressOxford5775Google Scholar
  4. Arlt, G. 1973Temporal and spatial meiofauna fluctuations in an inlet of the South West baltic (Darss-Zingster Bodden Chain) with special reference to the Harpacticoida (Copepoda, Crustacea)Internationale Revue der gesamten Hydrobiologie73297308Google Scholar
  5. Arndt, H., Dietrich, D., Auer, B., Cleven, E. -J., Gräfenhahn, T., Weitere, M., Mylnikov, A. 2000Functional diversity of heterotrophic flagellates in aquatic ecosystemsLeadbeater, B. S. C.Green, J. C. eds. The FlagellatesTaylor & FrancisLondon240268Google Scholar
  6. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. 1983The ecological role of water-column microbes in the seaMarine Ecology Progress Series10257263Google Scholar
  7. Bak, R. P. M., van Duyl, F. C., Nieuwland, G., Kop, A.J. 1991Benthic heterotrophic nanoflagellates in North Sea field/mesocosm bottoms and their response to algal sedimentationOphelia33187196Google Scholar
  8. Bak, R. P. M., van Duyl, F. C., Nieuwland, G. 1995Organic sedimentation and macrofauna as forcing factors in marine benthic nanoflagellate communitiesMicrobial Ecology29173182Google Scholar
  9. Bayliss, P., Ellis-Evans, J. C., Laybourn-Parry, J. 1997Temporal patterns of primary production in a large ultra-oligotrophic Antarctic freshwater lakePolar Biology18363370Google Scholar
  10. Berninger, U.-G., Caron, D.A., Sanders, R.W., Finlay, B. J. 1991Heterotrophic flagellates of planktonic communities, their characteristics and methods of studyPatterson,  D. J.Larsen, J. eds. The Biology of Free-living Heterotrophic Flagellates. Systematics Association Special Volume No. 45Clarendon PressOxford3556Google Scholar
  11. Børsheim, K. Y., Bratbak, G. 1987Cell volume to cell carbon conversion factors for a bacterivorous Monas sp enriched from seawaterMarine Ecology Progress Series36171175Google Scholar
  12. Butler, H. G., Edworthy, M. G., Ellis-Evans, J. C. 2000Temporal plankton dynamics in an oligotrophic maritime Antarctic lakeFreshwater Biology43215230Google Scholar
  13. del Giorgio, P. A., Gasol, J. M., Vaqué, D., Mura, P., Agustí, S., Duarte, C. M. 1996Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine communityLimnology and Oceanography4111691179Google Scholar
  14. Dietrich, D., 2000. Structure and function of the benthic microbial food web with special reference to the heterotrophic flagellates. Ph.D. Thesis. University of Cologne.Google Scholar
  15. Dietrich, D., Arndt, H. 2000Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliatesMarine Biology136309322Google Scholar
  16. Epstein, S. S., Alexander, D., Cosmann, K., Dompé, A., Gallagher, S., Jarsobski, J., Laning, E., Martinez, R., Panasik, G., Peluso, C., Runde, R., Timmer, E. 1997Enumeration of sandy sediment bacteria: are the counts quantitative or relative?Marine Ecology Progress Series1511116Google Scholar
  17. Feller, R. J., Warwick, R. M. 1988EnergeticsHiggins, R. P.Thiel, H. eds. Introduction to the Study of MeiofaunaSmithsonian Institute PressWashington DC181196Google Scholar
  18. Fenchel, T. 1982Ecology of heterotrophic microflagellates IV. Quantitative occurrence and importance as bacterial consumersMarine Ecology Progress Series93542Google Scholar
  19. Finlay, B. J., A. Rogerson & A. J. Cowling, 1988. Collection, Isolation, Cultivation and Identification of Freshwater Protozoa. Titus Wilson and Son, Kendall.Google Scholar
  20. Foissner, W. 1991Basic light and scanning electron-microscopic methods for taxonomic studies of ciliated protozoaEuropean Journal of Protistology27313330Google Scholar
  21. Gasol, J. M. 1993Benthic flagellates and ciliates in fine freshwater sediments: calibration of a live counting procedure and estimation of their abundanceMicrobial Ecology25247262Google Scholar
  22. Gasol, J. M., Vaqué, D. 1993Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systemsLimnology and Oceanography38657665Google Scholar
  23. Giere, O. 1993Meiobenthology: the Microscopic Fauna in Aquatic SedimentsSpringer-VerlagHeidelberg340Google Scholar
  24. Hausmann, K., Hülsmann, N. 1996ProtozoologyGeorge Thieme VerlagStuttgartGoogle Scholar
  25. Hausmann, K., Hülsmann, N., Polianski, I., Schade, S., Weitere, M. 2002Composition of benthic protozoan communities along a depth transect in the eastern Mediterranean SeaDeep-Sea Research I4919591970Google Scholar
  26. Hawes, I., Howard-Williams, C. 1998Primary production processes in streams of the McMurdo Dry Valleys, AntarcticaPriscu, J. C. eds. Ecosystem Dynamics in A Polar desert: the McMurdo dry valleys, Antarctica. Antarctic Research Series 72American Geophysical UnionFlorida129140Google Scholar
  27. Hawthorn, G. R., Ellis-Evans, J. C. 1984Benthic protozoa from marine Antarctic freshwater lakes and poolsBritish Antarctic Survey Bulletin626781Google Scholar
  28. Izaguira, I., Pizarro, H. 1998Epilithic algae in a glacial stream at Hope Bay (Antarctica)Polar Biology192431Google Scholar
  29. Kawecka, B., Olech, M., Nowogrodzka-Zagóska, M., Wojtun, B. 1998Diatom communities in small water bodies at H Arctowski Polish Antarctic Station (King George Island, South Shetland Islands, Antarctica)Polar Biology19183192Google Scholar
  30. Larsen, J., Patterson, D. L. 1990Some flagellates (Protista) from tropical marine sedimentsJournal of Natural History24801937Google Scholar
  31. Laybourn-Parry, J., Marchant, H. J., Brown, P. E. 1992Seasonal cycle of the microbial plankton in Crooked Lake, AntarcticaPolar Biology124114156Google Scholar
  32. Laybourn-Parry, J., Ellis-Evans, J. C. , Butler, H. G. 1996Microbial dynamics during summer ice-loss phase in maritime Antarctic lakesJournal of Plankton Research18495511Google Scholar
  33. Laybourn-Parry, J., Bell, E. M., Roberts, E. C. 2000Protozoan growth rates in Antarctic lakesPolar Biology23445451Google Scholar
  34. Mataloni, G., Tesolín, G., Tell, G. 1998Characterization of a small eutrophic Antarctic lake (Otero Lake, Cierva Point) on the basis of algal assemblages and water chemistryPolar Biology19107114Google Scholar
  35. McKnight, D. M., Alger, A., Tate, C. M., Shupe, G., Spaulding, S. 1998Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, southern Victoria Land, AntarcticaPriscu, J. C. eds. Ecosystem Dynamics in A Polar Desert: the McMurdo dry valleys, Antarctica. Antarctic Research Series 72American Geophysical Union Florida109127Google Scholar
  36. Moorhead, D. L., McKnight, D. M., Tate, C. M. 1998Modeling nitrogen transformations in dry valley streams, AntarcticaPriscu, J. C. eds. Ecosystem Dynamics in a Polar Desert: the McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72American Geophysical Union Florida141151Google Scholar
  37. Nadeau, T. L., Carstenholz, R. W. 2000Characterization of psychrophilic Oscillatoria (cyanobacteria) from Antarctic meltwater pondsJournal of Phycology36914923Google Scholar
  38. Olson, J. B., Steppe, T. F., Litaker, R. W., Paerl, H. W. 1998N2-fixing microbial consortia associated with the ice cove of Lake Bonney, AntarcticaMicrobial Ecology36231238Google Scholar
  39. Paerl, H. E., Priscu, J. C. 1998Microbial phototrophic, heterotrophic and diazotrophic activities associates with aggregates in the permanent ice cover of Lake Bonney, AntarcticaPolar Biology36221230Google Scholar
  40. Patterson, D. J., Larsen, J. 1991The Biology of Free-living Heterotrophic Flagellates Systematics Association Special Volume No. 45Clarendon PressOxfordGoogle Scholar
  41. Patterson, D. J., Nygaard, K., Steinberg, G., Turley, C.M. 1993Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North AtlanticJournal Marine Biological Association UK736795Google Scholar
  42. Porter, K. G., Feig, Y. S. 1980The use of DAPI for identifying and counting aquatic microfloraLimnology and Oceanography25943945Google Scholar
  43. Rocha, O., Duncan, A. 1985The relationship between cell carbon and cell volume in freshwater algal species in zooplanktonic studiesJournal of Plankton Research7279294Google Scholar
  44. Sahm, K., Berninger, U.-G. 1998Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svålbard, Arctic Ocean)Marine Ecology Progress Series1657180Google Scholar
  45. Sanders, R. W. 1991Trophic strategies among heterotrophic flagellatesPatterson, D. J.Larsen, J. eds. The Biology of Free-living Heterotrophic Flagellates. Systematics Association Special Volume No. 45Clarendon Press Oxford2138Google Scholar
  46. Simek, K., Macek, M., Seda, J., Vyhnalek, V. 1990Possible food chain relationship between bacterioplankton, protozoans, and cladocerans in a reservoirInternationale Revue der gesamten Hydrobiologie75583596Google Scholar
  47. Smith, H. G., Hughes, J., Moore, S. J. 1990Growth of Antarctic and temperate terrestrial Protozoa under fluctuating temperature regimesAntarctic Science2313320Google Scholar
  48. Takacs, C. D., Priscu, J. C. 1998Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasonsMicrobial Ecology36239250Google Scholar
  49. Taylor, W., Sanders, R. 1991ProtozoaThorp, J. H.Covich, A. P. eds. Ecology and Classification of North American Freshwater InvertebratesAcademic PressSan Diego6386Google Scholar
  50. Turley, C. M., Newell, R. C., Robins, D. B. 1986Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditionsMarine Ecology Progress Series335970Google Scholar
  51. Tong, S. M., Vørs, N., Patterson, D. J. 1996Heterotrophic flagellates, centrohelid heliozoa and filose amoeba from marine and freshwater sites in the AntarcticPolar Biology1891106Google Scholar
  52. Vopel, K., Arlt, G. 1995The fauna of floating cyanobacterial mats in the oligohaline eulittoral zone of Hiddensee (south-east coast of the Baltic Sea)Marine Ecology-Pubblicazioni Della Stazione Zoological di Napolii16217231Google Scholar
  53. Watson, S. W., Novitsky, T. J., Quinby, H. L., Valois, F. W. 1977Determination of bacterial number and biomass in the marine environmentApplied Environmental Microbiology33940946Google Scholar
  54. Weitere, M., Arndt, H. 2003Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany)European Journal of Protistology39287300Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of General Ecology and Limnology, Zoological InstituteUniversity of CologneKölnGermany
  2. 2.Institute for Biology/ZoologyFree University of BerlinBerlinGermany

Personalised recommendations