Advertisement

Hydrobiologia

, Volume 535, Issue 1, pp 127–137 | Cite as

The coelom and the origin of the annelid body plan

  • Reinhard M. Rieger
  • Günter Purschke
Article

Abstract

The biphasic life cycle in annelids is characterized by two completely different types of organisation, i.e. the acoelomate/pseudocoelomate larva and the coelomate adult. Based on this observation the recent literature on the different assumptions on the organisation of the bilaterian stem species with special emphasis on the evolution of the annelid body plan is reviewed. The structure of the coelomic lining ranges between a simple myoepithelium composed of epithelio-muscle cells and a non-muscular peritoneum that covers the body wall muscles. The direction of the evolution of these linings is discussed with respect to coelomogenesis. As the coelom originates from mesodermal cell bands, different assumption on the acoelomate condition in Bilateria can be substantiated. The origin of segmentation in annelids is explained by current hypothesis. Although no final decision can be made concerning the origin of the annelid body plan and the organisation of the bilaterian stem species, this paper elaborates those questions that need to be resolved to unravel the relation between the different body plans.

Keywords

: Bilateria Annelida Polychaeta body cavity coelom acoelomate pseudocoelomate peritoneum, 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adoutte, A., Balavoine, G., Lartillot, N., Rosa, R. de 1999Animal evolution the end of the intermediate taxaTrends in Genetics15105108CrossRefGoogle Scholar
  2. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., Rosa, R. de 2000The new animal phylogeny: reliability and implicationsProceedings of the National Academy of Sciences, USA9744534456CrossRefGoogle Scholar
  3. Anderson, D. T., 1973. Embryology and Phylogeny in Annelids and Arthropods. Pergamon, Oxford, 495 pp.Google Scholar
  4. Ax, P., 1996. Multicellular Aminals. A New Approach to the Phylogenetic Order in Nature. Springer, Berlin, Heidelberg, New York, 225 pp.Google Scholar
  5. Balavoine, G. 1998Are Platyhelminthes coelomates without a coelomAn argument based on the evolution of Hox genes. American Zoologist38843858Google Scholar
  6. Bartolomaeus, T. 1994On the ultrastructure of the coelomic lining in Annelida, Echiura and SipunculaMicrofauna Marina9171220Google Scholar
  7. Budd, G. E. 2001Why are arthropods segmentedEvolution and Development3332342CrossRefPubMedGoogle Scholar
  8. Clark, R. B., 1964. Dynamics in Metazoan Evolution. The Origin of the Coelom and Segments. Clarendon, Oxford, 313 pp.Google Scholar
  9. Clark, R. B. 1964Dynamics in Metazoan EvolutionThe Origin of the Coelom and Segments. ClarendonOxford313Google Scholar
  10. Davidson, E. H., Peterson, K. J., Cameron, R. A. 1995Origin of adult bilaterian body plans: evolution of developmental regulatory mechanismsScience27013191325PubMedGoogle Scholar
  11. Davis, G. K., Patel, N. H. 1999The origin and evolution of segmentationTrends in Genetics15M68M72CrossRefGoogle Scholar
  12. Fawcett, D. W. 1994A Textbook of HistologyChapman & HallNew York964Google Scholar
  13. Fransen, M. E. 1980Ultrastructure of the coelomic organisationI. Archiannelids and other small polychaetes. Zoomorphologie95235249Google Scholar
  14. Fransen, M. E. 1982The role of ECM in the development of invertebrates: a phylogeneticist’s viewHawkes, S.Wang, J. L. eds. Extracellular Matrix 478AcademicNew York177181Google Scholar
  15. Fransen, M., 1988. Coelomic and vascular system. In Westheide W. & C. O. Hermans (eds), The Ultrastructure of Polychaeta. Microfauna Marina 4: 199–213.Google Scholar
  16. Gardiner, S. L. 1992Polychaeta.General organization, integument, musculature, coelom, and vascular systemHarrison, F. W.Gardiner, S. L. eds. Microscopic Anatomy of Invertebrates Vol.7 Annelida.Wiley-LissNew York1952Google Scholar
  17. Garey, J. R., 2003. Ecdysozoa: the evidence for a close relationship between arthropods and nematodes. In Legakis, A., S. Sfenthourakis, R. Polymeni & M. Thessalou-Legaki (eds), The new Panorama of Animal Evolution. Proceedings XVIII International Congress of Zoology, Pensoft, Sofia: 503–509.Google Scholar
  18. Goodrich, E. S. 1946The study of nephridia and genital ducts since 1895Quarterly Reviews of microscopical Science, New Series86113392Google Scholar
  19. Green, C. R. 1981A clarification of the two types of invertebrate pleated septate junctionTissue & Cell13173188Google Scholar
  20. Green, C. R., Bergquist, P. R. 1982Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of ‘occluding’ junctional typesJournal of Cell Sciences53279305Google Scholar
  21. Hartmann, W. 1963A critique of the enterocoele theoryDougherty, C. E. eds. The Lower Metazoa Vol.5University CaliforniaBerkeley5577Google Scholar
  22. Haszprunar, G. 1996The Mollusca: coelomate turbellarians or mesenchymate annelidsTaylor, J. eds. Origin and Evolutionary Radiation of the MolluscaOxford UniversityOxford128Google Scholar
  23. Heimler, W. 1981aUntersuchungen zur Larvalentwicklung von Lanice conchilega (Pallas) 1766 (Polycheata, Terebellomorpha)Teil I: Entwicklungsablauf. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere1061245Google Scholar
  24. Heimler, W. 1981bUntersuchungen zur Larvalentwicklung von Lanice conchilega (Pallas) 1766 (Polycheata, Terebellomorpha)Teil II: Bau und Ultrastruktur der Trochophora-Larve. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere106236277Google Scholar
  25. Heimler, W. 1983Untersuchungen zur Larvenentwicklung von Lanice conchilega (Pallas) 1766 (Polychaeta, Terebellomorpha) Teil III: Bau und Struktur der Aulophora-LarveZoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere110411478Google Scholar
  26. Heimler, W., 1988. Larvae. In Westheide, W. & C. O. Hermans (eds), The Ultrastructure of Polychaeta. Microfauna Marina 4: 353–371.Google Scholar
  27. Hyman, L. H. 1951The Ivrtebrates: Platyhelminthes and Rhynchocoela The Acoelomate Bilateria. McGraw Hill New York550Google Scholar
  28. Jouve, C., Iimura, T., Pourquier, O. 2002Onset of the segmentation clock in the chick embryo: evidence for oscillations in the somite precursors in the primitive streakDevelopment12911071117PubMedGoogle Scholar
  29. Kleinig, H. & U. Maier, 1999. Zellbiologie. Gustav Fischer, Stuttgart, Jena, 534 pp.Google Scholar
  30. Ladurner, P., Rieger, R. M. 2000Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes)Developmental Biology222359375CrossRefPubMedGoogle Scholar
  31. Minelli, A., 1995. Body cavities and body segmentation: problems of homology and phylogenetic reconstruction. In Lanzavecchia, G. R. Valvassori & M. D. Candia Carnevalli (eds), Body Cavities: Function and Phylogeny. Selected Symposia and Monographs, U.Z.I., 8, Mucchi, Modena: 69–73.Google Scholar
  32. Nielsen, C. 2001Animal Evolution Interrelationships of the Living PhylaOxford UniversityNew York563Google Scholar
  33. Pedersen, K. J. 1991Structure and composition of basement membranes and other basal matrix systems in selected invertebratesActa Zoologica (Stockholm)72181201CrossRefGoogle Scholar
  34. Peterson, K. J., Davidson, E. H. 2000Regulatory evolution and the origin of the bilateriansProceedings of the National Academy of Sciences of the USA9744304433PubMedGoogle Scholar
  35. Peterson, K. J., Cameron, R. A., Davidson, E. H. 1997Set-aside cells in maximal indirect development: evolutionary and developmental significanceBioessays19623631CrossRefPubMedGoogle Scholar
  36. Peterson, K. J., Cameron, R. A., Davidson, E. H. 2000Bilaterian origins: significance of new experimental observationsDevelopmental Biology219117CrossRefPubMedGoogle Scholar
  37. Potswald, H. 1981Abdominal segment formation in Spirorbis moerchi (Polychaeta)Zoomorphology97225245CrossRefGoogle Scholar
  38. Reiter, D., Boyer, B., Ladurner, P., Mair, G., Salvenmoser, W., Rieger, R. 1996Differentiation of the body wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Plathelminthes), as models for muscle development in lower SpiraliaRoux’s Archives of Developmental Biology205410423Google Scholar
  39. Remane, A. 1950Die Entstehung der Metamerie der WirbellosenZoologischer Anzeiger, Supplementband141623Google Scholar
  40. Remane, A., 1954. Die Geschichte der Tiere. In Herberer, G. (ed.), Die Evolution der Organismen. Vol. 2, 2nd edn. Fischer, Stuttgart: 340–422.Google Scholar
  41. Remane, A. 1963aThe enterocelic origin of the coelomDougherty, C. E. eds. The Lower MetazoaUniversity of CaliforniaBerkeley, CA7890Google Scholar
  42. Remane, A. 1963bThe evolution of the Metazoa from colonial flagellates vs plasmodial ciliatesDougherty, C. E. eds. The Lower Metazoa. Comparative Biology and PhylogenyUniversity of CaliforniaBerkeley, CA2332Google Scholar
  43. Rieger, R. M. 1985The phylogenetic status of the acoelomate organization within the bilateria a histological perspectiveConway-Morris, S.George, J. D.Gibson, R.Platt, H. M. eds. The Origins and Relationships of Lower InvertebratesClarendonOxford101122Google Scholar
  44. Rieger, R. M., 1986. Über den Ursprung der Bilateria: die Bedeutung der Ultrastrukturforschung für ein neues Verstehen der Metazoenevolution. Verhandlungen der Deutschen Zoologischen Gesellschaft 79: 31–50. (English translation at http://www.umsci.maine.edu./biology/labs/original/)Google Scholar
  45. Rieger, R. M. 1994Evolution of the ‘lower’ MetazoaBengtson, S. eds. Early Life on Earth. Nobel Symposium no. 84.Columbia UniversityNew York475488references on 517–598Google Scholar
  46. Rieger, R. M. 1991aNeue Organisationstypen aus der Sandlückenfauna: die Lobatocerebriden und Jenneria pulchraVerhandlungen der Deutschen Zoologischen Gesellschaft84247259Google Scholar
  47. Rieger, R. M. 1991bJennaria pulchra, novgen. nov. spec., eine den psammobionten Anneliden nahestehende Gattung aus dem Küstengrundwasser von North Carolina. Berichte des Naturwissenschaftlich Medizinischen Vereins in Innsbruck78203215Google Scholar
  48. Rieger, R. M., Ladurner, P. 2001Searching for the stem species of the BilateriaBelgian Journal of Zoology,1312734Supplement 1Google Scholar
  49. Rieger, R. M., Ladurner, P. 2003The significance of muscle cells for the origin of mesoderm in BilateriaIntegrative & Comparative Biology434754Google Scholar
  50. Rieger, R. M., Lombardi, J. 1987Comparative ultrastructure of coelomic linings in echinoderm tube feet and the evolution of peritoneal linings in the BilateriaZoomorphology107191208CrossRefGoogle Scholar
  51. Rieger, R. M., Tyler, S. 1979The homology theorem in ultrastructure researchAmerican Zoologist19654666Google Scholar
  52. Ruppert, E. E., Carle, K. J. 1983Morphology of metazoan circulatory systemsZoomorphology103193208CrossRefGoogle Scholar
  53. Salvini-Plawen, L. v. & T. Bartolomaeus, 1995. Mollusca: mesenchymata with a coelom. In Lanzavecchia, G. R. Valvassori & M. D. Candia Carnevalli (eds), Selected Symposia and Monographs U.Z.I., 8, E. Muncchi, Modena: 75–92.Google Scholar
  54. Schiebler, T. H., Schmidt, W. 2002AnatomieSpringerBerlin Heidelberg892Google Scholar
  55. Schmidt-Rhaesa, A. 2003Integrative approaches to phylogenetic relationships of arthropods: introduction to the symposiumLegakis, A.Sfenthourakis, S.Polymeni, R.Thessalou-Legaki, M. eds. The new Panorama of Animal Evolution. Proceedings XVIII International Congress of ZoologyPensoftSofia461466Google Scholar
  56. Schmidt-Rhaesa, A., Bartolomaeus, T., Lemburg, C., Ehlers, U., Garey, J. R. 1998The position of the Arthopoda in the phylogenetic systemJournal of Morphology238413418CrossRefGoogle Scholar
  57. Scholtz, G. 2003Integrative approaches to phylogenetic relationships of arthropods: introduction to the symposiumLegakis, A.Sfenthourakis, S.Polymeni, R.Thessalou-Legaki, M. eds. The new Panorama of Animal Evolution. Proceedings XVIII International Congress of ZoologyPensoftSofia489501Google Scholar
  58. Shankland, M., Seaver, E. C. 2000Evolution of the bilaterian body plan: what have we learned from annelidsProceedings of the National Academy of Sciences of the USA9744344437CrossRefPubMedGoogle Scholar
  59. Siewing, R., 1985. Lehrbuch der Zoologie Vol. 2, Systematik. Fischer, Stuttgart, New York, 1107 pp.Google Scholar
  60. Smith, J. P. S., Lombardi, J., Rieger, R. M. 1986Ultrastructure of the body cavity lining in a secondary acoelomate, Microphthalmus cflistensis Westheide (Polychaeta, Hesionidae). Journal of Morphology188257271Google Scholar
  61. Stauber, M. 1993The latern of Aristotle: organization of its coelom and origin of its muscles (Echinodermata, Echinoida)Zoomorphology113137151CrossRefGoogle Scholar
  62. Takeichi, M. 1991Cadherin cell adhesion receptors as a morphogenetic regulatorScience25114511455PubMedGoogle Scholar
  63. Tepass, U., Truong, K., Goudt, D., Ikura, M., Pfeifer, M. 2000Cadherins in embryonic and neural morphogenesisNature Reviews of Molecular Cell Biology191100Google Scholar
  64. Turbeville, J. M. 1986An ultrastructural analyis of coelomogenesis in the hoplonemertine Prosorhochmus americanus and the polychaete Magelona spJournal of Morphology1875160CrossRefGoogle Scholar
  65. Tyler, S., 1988. The role of function in determination of homology and convergence – examples from invertebrate adhesive organs. In Ax, P., U. Ehlers & B. Sopott-Ehlers (eds), Free-living and Symbiotic Plathelminthes. Progress in Zoology 36: 331–374.Google Scholar
  66. Tyler, S., 2001. Origin and relationship of lower flatworms. In Littlewood, D. T. J. & R. A. Bray (eds), Interrelationsships of the Platyhelminthes. Taylor and Francis, New York: 3–12.Google Scholar
  67. Tyler, S. 2003Epithelum–the primary building block for metazoan complexityIntegrative and Comparative Biology435563Google Scholar
  68. Wanninger, A., Haszprunar, G. 2002Chiton Myogenesis: Perspectives for the development and evolution of larval and adult muscle systems in molluscsJournal of Morphology251103113CrossRefPubMedGoogle Scholar
  69. Westheide, W. 1987Progenesis as a principle in meiofauna evolutionJournal of Natural History21843854Google Scholar
  70. Westheide, W. 1997The direction of evolution within the PolychaetaJournal of Natural History31115Google Scholar
  71. Westheide, W. & R. Rieger, 1996. Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, 909 pp.Google Scholar
  72. Willmer, P. 1991Invertebrate Relationships Patterns in Animal EvolutionCambridge UniversityMelbourne400Google Scholar
  73. Willmer, P., 1995. Modern approaches to the phylogeny of body cavities. In Lanzavecchia, G., R. Valvassori & M. D. Candia Carnevalli (eds), Body Cavities: Function and Phylogeny. Selected Symposia and Monographs, U.Z.I., 8, Mucchi, Modena: 23–39.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Abteilung Ultrastrukturforschung und Evolutionsbiologie, Institut für Zoologie und LimnologieUniversität InnsbruckInnsbruckAustria
  2. 2.Spezielle Zoologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations