, Volume 539, Issue 1, pp 1–11 | Cite as

Degradation of surface-water dissolved organic matter: influences of DOM chemical characteristics and microbial populations

  • Katherine C. Young
  • Kathryn M. Docherty
  • Patricia A. Maurice
  • Scott D. Bridgham
Primary Research Paper


The degree to which biodegradation of dissolved organic matter (DOM) depends on microbial community structure and source remains unknown. In this study, we concentrated the microbial biomass from two streams in northern Michigan and a dystrophic ‘bog’ lake in northern Wisconsin with varying initial DOM concentration (6.7–78.8 mg C l−1) and DOM chemical characteristics (e.g. DOM average molecular weights from 808–1887 Da). Each of the three microbial inocula was added to each of the three DOM sources at in situ population levels for a total of nine treatments. Changes in DOM concentration and bacterial productivity, along with chemical characteristics, were examined over 308 h. The [3H]-leucine incorporation method was used to measure microbial production. In two of three sampling sites, bacterial communities were most productive when metabolizing DOM in their native waters. A variable peak in productivity was seen between 16–48 h after inoculation, followed by a drop in productivity in most treatments, with periods of DOM production most likely due to microbial turnover. These data suggest that microbial communities are better able to degrade the DOM of their native habitats, suggesting that biodegradation of DOM is influenced by source-specific microbial species and DOM chemical characteristics.


biodegradation dissolved organic matter microbial community 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amon, R., Benner, R. 1996Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon river systemGeochimica et Cosmochimica Acta6017831792CrossRefGoogle Scholar
  2. Azam, F. 1998Microbial control of oceanic carbon flux: the plot thickensScience280694696CrossRefGoogle Scholar
  3. Bertilsson, S., Tranvik, LJ. 1998Photochemcially produced carboxylic acids as substrates for freshwater bacterioplanktonLimnology and Oceanography43885895Google Scholar
  4. Chin, Y.-P., Aiken, G., O’Loughlin, E. 1994Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substancesEnvironmental Science & Technology2818531858Google Scholar
  5. Cottrell, M.T., Kirchman, DL. 2000Natural assemblanges of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low and high molecular weight DOMApplied Environmental Microbiology6616921697CrossRefGoogle Scholar
  6. Covert, J.S., Moran, MA. 2001Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbonAquatic Microbial Ecology25127139Google Scholar
  7. Findlay, S., Carlough, L., Crocker, MT., Gill, HK., Meyer, J.L., Smith, PJ. 1986Bacterial growth on macrophyte leachate and fate of bacterial productionLimnology and Oceanography3113351341Google Scholar
  8. Geller, A. 1986Comparison of mechanisms enhancing biodegradability of refractory lake water constituentsLimnology and Oceanography31755764Google Scholar
  9. Hobbie, J.E., Daley, J., Jasper, S. 1977Use of Nuclepore filters for counting bacteria by fluorescence microscopyApplied Environmental Microbiology3312251228Google Scholar
  10. Hobbie, J.E. 1988A comparison of planktonic bacteria in fresh and salt waterLimnology and Oceanography33750764Google Scholar
  11. Kaplan, L.A., Bott, TL. 2000Microbial heterotrophic utilization of dissolved organic matter in a piedmont streamLimnology and Oceanography27363377Google Scholar
  12. Kirchmann, D.L.,  et al. 1993Leucine incorporation as a measure of biomass productionKemp, P. F. eds. Handbook of Methods in Aquatic Microbial EcologyLewisBoca Raton509512Google Scholar
  13. Leff, L.G. 2000Longitudinal changes in microbial assemblages of the Ogeechee RiverFreshwater Biology43605615Google Scholar
  14. Leff, L.G., Meyer, JL. 1991Biological availability of dissolved organic carbon along the Ogeechee RiverLimnology and Oceanography36315323Google Scholar
  15. Lindell, J.J., Graneli, W., Tranvik, LJ. 1995Enhanced bacterial growth in response to photochemical transformation of dissolved organic matterLimnology and Oceanography40195199Google Scholar
  16. Mann, C.J., Wetzel, RG. 1995Dissolved organic carbon and its utilization in a riverine wetland ecosystemBiogeochemistry31991290Google Scholar
  17. Massana, R., Pedros-Alio, C., Casamayor, E.O., Gasol, JM. 2001Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parametersLimnology and Oceanography4611811188Google Scholar
  18. Maurice, P.A., Leff, LG. 2002Hydrogeochemical controls on the organic matter and bacterial ecology of a small freshwater wetland in the New Jersey Pine BarrensWater Resources3625612570Google Scholar
  19. Meyer, J.L., Benke, AC., Edwards, RT., Wallace, JB. 1997Organic matter dynamics in the Ogeechee River, a blackwater river in Georgia, USAJournal of North American Benthological Society538287Google Scholar
  20. Meyer, J.L., Edwards, R.T., Risley, R. 1987Bacterial growth on dissolved organic carbon from a blackwater riverMicrobial Ecology131329Google Scholar
  21. Moran, M.A., Hodson, RE. 1990Bacterial production on humic and nonhumic components of dissolved organic carbonMicrobial Ecology131329Google Scholar
  22. Moran, M.A., Sheldon, WM., Zepp, RG.,Jr. 2000Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matterLimnology and Oceanography4512541264Google Scholar
  23. Ogura, N. 1975Further studies on decomposition of dissolved organic matter in coastal seawaterMarine Biology31101111CrossRefGoogle Scholar
  24. O’Loughlin, E., Chin, Y.-P. 2001Effect of detector wavelength on the determination of the molecular weight of humic substances by high-pressure size exclusion chromatographyWater Research35333338CrossRefPubMedGoogle Scholar
  25. Reche, I., Pace, ML., Cole, JJ. 1998Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbonMicrobial Ecology36270280CrossRefPubMedGoogle Scholar
  26. Saunders, G. 1976Decomposition in fresh waterAnderson, J.Macfadyen, A. eds. The Role of Terrestrial and Aquatic Organisms in Decomposition ProcessesBlackwellOxford341374Google Scholar
  27. Servais, P., Anzil, A., Ventresque, C. 1989Simple method for determination of biodegradable dissolved organic carbon in waterApplied and Environmental Microbiology5527322734Google Scholar
  28. Sondergaard, M., Middelboe, M. 1995A cross-system analysis of labile dissolved organic carbonMarine Ecology Progress Series118283294Google Scholar
  29. Sun, L., Perdue, EM., Meyer, J., Weiss, J. 1997Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia riverLimnology and Oceanography42714721Google Scholar
  30. Traina, S.J., Novak, J., Smeck, NE. 1990An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acidsJournal of Environmental Quality19151153Google Scholar
  31. Tranvik, L.J. 1989Bacterioplankton growth, grazing mortality and quantitatvie relationship to primary production in a humic and a clearwater lakeJournal of Plankton Research119851000Google Scholar
  32. Tranvik, L.J. 1990Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear watersApplied Environmental Microbiology5616721677Google Scholar
  33. Tulonen, T., Salonen, K., Arvola, L. 1992Effects of different molecular weight fractions of dissolved organic matter on growth of bacteria, algae and protozoa from highly humic lakesHydrobiologia229239252Google Scholar
  34. Volk, C.J., Volk, C.B., Kaplan, LA. 1997Chemical composition of biodegradable dissolved organic matter in streamwaterLimnology and Oceanography423944Google Scholar
  35. Wetzel, R.G., Hatcher, P.G., Bianchi, TS. 1995Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolismLimnology and Oceanography4013691380Google Scholar
  36. Zhou, Q., Cabaniss, S.E., Maurice, PA. 2000Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substancesWater Research3435053514CrossRefGoogle Scholar
  37. Zhou, Q., Maurice, P.A., Cabaniss, SE. 2001Size fractionation upon adsorption of fulvic acid on goethite: equlibrium and kinetic studiesGeochimica et Cosmochimica Acta65803812CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Katherine C. Young
    • 1
  • Kathryn M. Docherty
    • 2
  • Patricia A. Maurice
    • 1
  • Scott D. Bridgham
    • 3
  1. 1.Civil Engineering and Geological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  3. 3.Center for Ecology and Evolutionary BiologyUniversity of OregonEugeneUSA

Personalised recommendations