, Volume 530, Issue 1–3, pp 319–327 | Cite as

Morphogenetic evolution of hydroid colony pattern

  • N. N. Marfenin
  • I. A. Kosevich


A scheme of evolution of hydrozoan colony pattern is proposed based upon the consideration of macro-morphogenesis. Four main processes play decisive roles(1) hard skeleton formation by soft tissues, (2) changes in duration of the growth phase relative to the transition to differentiation in interdependent zones of growth, (3) ratio in growth rates between adjacent zones of growth within the rudiment, the shoot, or the whole colony, and (4) spatial relationships among growth zones. The main tendency in morphological evolution of the hydroids is an increasing integration of the colony as revealed by increasing complexity of its structure. That is from a temporary colony towards the permanent one with highly organised shoots, as hydranths and branches are localised in a strictly arranged manner. An analysis of diverse data allows one to state that the main morphogenetic mechanism of increasing complexity in the hydroid colony is convergence, then fusion, of adjacent growth zones, a variant of heterochrony.


hydroid colony heterochrony colony integration Hydrozoa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beklemishev, V. N. 1969Principles of Comparative Anatomy of InvertebratesUniversity of Chicago PressChicagoGoogle Scholar
  2. Belorustseva, S. A., Marfenin, N. N. 2002Affect of variable phases of tide cycle on reproduction of the Laomedea flexuosa (Hydroidea, Thecaphora).Zhurnal Obschey Biologii635061Google Scholar
  3. Beloussov, L. V. 1975Possible ontogenetic mechanisms governing formation of principal morphogenetic types of thecaphoran hydroids.Zhurnal Obschey Biologii36203211(in Russian)Google Scholar
  4. Beloussov, L. V. 1991Basic morphogenetic processes in Hydrozoa and their evolutionary implications: an exercise in rational taxonomyHydrobiologia216/2176167CrossRefGoogle Scholar
  5. Beloussov, L. V., Dorfman, J. G. 1974On the mechanics of growth and morphogenesis in hydroid polypsAmerican Zoologist14719734Google Scholar
  6. Beloussov, L. V., Ostroumova, T. V. 1969Metabolic gradients and morphological polarization in embryonic development of hydroid polypesJournal of Embryology and Experimental Morphology22431447Google Scholar
  7. Beloussov, L. V., Badenko, L. A., Katchurin, A. L., Kurilo, L. F. 1972Cell movements in morphogenesis of hydroid polypsJournal of Embryology and Experimental Morphology27317337PubMedGoogle Scholar
  8. Berrill, N. J. 1949aGrowth and form in calyptoblastic hydroids.1 Comparision of a campanulid, campanularian, sertularian, and plumularianJournal of Morphology85297335CrossRefGoogle Scholar
  9. Berrill, N. J. 1949bGrowth and form in gymnoblastic hydroids 1. Polymorphic development in Bougainvillia and Aselomaris.Journal of Morphology84130CrossRefGoogle Scholar
  10. Berrill, N. J. 1949cThe polymorphic transformations of ObeliaQuarterly Journal of Microscopical Sciences90235264Google Scholar
  11. Berrill, N. J. 1950Growth and form in calyptoblastic hydroids II. Polymorphism within the Campanularidae.Journal of Morphology87126Google Scholar
  12. Burykin, Ju. B., Marfenin, N. N. 1983The growth and structure of the colony of a hydroid polyp Campanularia platycarpa (Hydrozoa, Campanulariidae).Zoologicheski Journal6214171419(in Russian)Google Scholar
  13. Cairns, S. D. 1987Evolutionary trends in the Stylasteridae (Cnidaria, Hydrozoa)Bouillon, J.Boero, F.Cicogna, F.Cornelius, P. F. S. eds. Modern Trends in the Systematics, Ecology, and Evolution of Hydroids and Hydromedudae.Clarendon PressOxford257274Google Scholar
  14. Chapman, G. 1981Individuality and modular animalsBiological Journal of the Linnean Society15177183Google Scholar
  15. Gould, S. J. 1977Ontogeny and PhylogenyHarvard University PressCambridgeGoogle Scholar
  16. Gurwitsch, A. G. 1922Über den Begriff des embryonalen FeldesArchiv für Entwicklungsmechanik51383415Google Scholar
  17. Ivanov, A. V. 1968The Origin of Metazoa Philogenetic StudiesNauka PublishesLeningrad(in Russian)Google Scholar
  18. Jackson, J. B. C., Coates, A. G. 1986Life cycles and evolution of clonal (modular) animalsPhilosophical Transactions of the Royal Society of London Biological Sciences313722CrossRefGoogle Scholar
  19. Kosevich, I. A., Marfenin, N. N. 1984Biology of the hydroid Obelia loveni (Allm.): colony formation, behaviour and life cycle of hydranths, reproductionVestnik Moscovskogo Universiteta, Seria Biologia31624(in Russian)Google Scholar
  20. Kühn, A. 1914Entwicklungsgeschichte und Verwandtschaftsbeziehengen der HydrozoenErgebnisse und Fortschritte der Zoologie41284Google Scholar
  21. Leontovich, A. A., Marfenin, N. N. 1990Interrelations of the main intracolonial processes during a branching of the colonial hydroids.Zhurnal Obschey Biologii51353362(in Russian)Google Scholar
  22. Malutin, O. I. & N. N. Marfenin, 1988. In search of indices for the water stream’s action on hydroid research. Porifera and Cnidaria: Modern and Perspective Investigations. Zoological Institute of the USSR Academy of Science: 98--103 (in Russian).Google Scholar
  23. Marfenin, N. N., 1980. Method of the mapping colonial structure in Hydrozoa, and its significance for colonial parts investigation. In Teoreticheskoe y practicheskoe znachenie kishechnopolostnyh (Theoretical and Applied Significance of the Coelenterate). Leningrad: 66–69 (in Russian).Google Scholar
  24. Marfenin, N. N. 1984aA morpho-functional analysis of a temporary hydroid colony, Moerisia maeotica (Ostr.,1896) (Leptolida, Limnomedusae) taken as an example.Zhurnal Obschey Biologii45660669(in Russian)Google Scholar
  25. Marfenin, N. N. 1984bOn space correlation between skeleton and soft tissue in Hexacorallia.Biologicheskie Nauki43639Google Scholar
  26. Marfenin, N. N. 1985aA morpho-functional analysis of␣creeping colonies organization in the hydroids, Cordylophora inkermanica Marfenin (Athecata, Clavidae) taken as an example.Zhurnal Obschey Biologii46541555(in Russian)Google Scholar
  27. Marfenin, N. N. 1985bA morpho-functional analysis of monopodial colonies organisation in the hydroids (Tubularia larynx Sol.), characterized by terminally arranged zooids Izvestija Akademii nauk SSSRSer. Biologicheskaya2238247(in Russian)Google Scholar
  28. Marfenin, N. N. 1987A colonial structure’s evolution of Leptolida In Morfogenez y puti razvitiy kolonialnosti mshanok i kishechnopolostnych (Morphogenesis and colonial development of the Bryozoan and Coelenterates)Nauka PublishesMoscow419(in Russian)Google Scholar
  29. Marfenin, N. N. 1993aPhenomenon of ColonialityMoscow University PressMoscow(in Russian)Google Scholar
  30. Marfenin,  N. N. 1993bFunctional Morphology of the Colonial HydroidsZoological InstituteSt. Petersburg(in Russian)Google Scholar
  31. Marfenin,  N. N. 1999Development of the concept of modular organizationZhurnal Obschey Biologii60617Google Scholar
  32. Marfenin, N., Yu, N., Burykin, B. 1979The growth of the hydroid colonies Dynamena pumila (L.) as the function of the quantity of foodVestnik Moskovskogo Universiteta, Seria Biologia16168(in Russian)Google Scholar
  33. Marfenin,  N. N., Homenko,  A. V. 1988Colonial morphology and some signs of morpho-functional adaptation hydroid Obelia geniculata (L.) to the life at the strong water movement environmentBiologocheskie Nauki53544(in Russian)Google Scholar
  34. Marfenin, N. N., Kosevich, I. A. 1984Colonial morphology of the hydroid Obelia loveni (Allm.) (Campanulariidae)Vestnik Moscovskogo Universiteta, Seria Biologia23746(in Russian)Google Scholar
  35. Marfenin,  N. N., Malutin,  O. I. 1994Water flow influence on the solitary stems of different hydroid speciesZhurnal Obschey Biologii55119127Google Scholar
  36. McKinney,  M. L., McNamara,  K. J. 1991Heterochrony: The Evolution of OntogenyHeterochrony: The Evolution of OntogenyNew YorkGoogle Scholar
  37. Naumov, D. V., 1960. Hydroids and hydromedusae of the marine, brackish and freshwater basins of the USSR. Opredeliteli po Faune SSSR. Academia Nauk Pablishes, Moskwa-Leningrad. (in Russian; translated by Israel Program for Scientific Translations, 1969, Jerusalem).Google Scholar
  38. Orlov, D. V. & N. N. Marfenin, 1995a. Behaviour and settlement of the planulae larvae of Gonothyraea loveni (Allman) (Hydroidea, Thecaphora) at the White Sea intertidal zone. In Stepanjants, S. D. (ed.), Cnidaria: Modern and Perspective Investigations. II. Proceedings of Zoological Institute of Russian Academy of Sciences, St. Petersburg 261: 103--120 (in Russian).Google Scholar
  39. Orlov, D. V., Marfenin, N. N. 1995bBehaviour and settlement of actinulae of Tubularia larynx (Leptolida, Tubulariiade)Hydrobiological Journal318492Google Scholar
  40. Raff,  R. A., Kaufmann,  T. C. 1983Embryos, Genes and EvolutionMacmillan PressNew YorkGoogle Scholar
  41. Sánchez, J. A. 2004Evolution and dynamics of branching colonial form in marine modular cnidarians: gorgonian octocoralsHydrobiologia530/531283290(Dev. Hydrobiol. 178)Google Scholar
  42. Spenser, G. 1898Principles of Biology, Vol IWilliams and NorgateLondonGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Invertebrate Zoology, Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations