Advertisement

Hydrobiologia

, Volume 534, Issue 1–3, pp 165–180 | Cite as

Microdynamics and seasonal changes in manganese oxide epiprecipitation in Pinal Creek, Arizona

  • Eleanora I. Robbins
  • Timothy L. Corley
Article

Abstract

In Pinal Creek, Arizona, Mn oxyhydroxides (MnO x ) collect as thick precipitates on surface sediment, within the streambed, beneath algal mats, and on submerged and emergent plants and mosses. The proximate source of Mn is a thick, alluvial alkaline aquifer that was contaminated by past acid mine waste disposal practices associated with copper mines located upstream in the Globe–Miami area. Almost every organism in Pinal Creek is coated with MnO x . Some are actively precipitating manganese, and others are doing it passively. The variety and seasonality of epilithic biological processes resulting in Mn oxidation (epiprecipitation) was studied for more than a year by analyzing artificial substrates placed in surface water having different flows and different vegetation types and densities. Most epiprecipitation took place on the holdfasts of the green alga, Ulothrix sp., and the iron bacterium, Leptothrix discophora. Extensive patches of MnO x also coated extracellular polymeric substances of fungal hyphae and bacterial filaments. The dominant macroscopic precipitation was in the form of MnO x clumps on mosses, green algae, and cyanobacterial mats, consistent with precipitation by pH elevation during photosynthesis. Most oxidation occurred in the spring and summer, in agreement with thermal, biological, and chemical activity models. More biological oxidation occurred in swifter water, consistent with oxygen elevation models. The efficiency of this naturally occurring, diverse ecosystem suggests that remediation efforts to remove metal contaminants such as Mn should focus on creation of habitats that raise biodiversity.

Keywords

acid mine drainage bioremediation fungal oxidation Leptothrix discophora manganese oxidation Ulothrix sp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L. F., Ghiorse, W. C. 1987Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1Journal of Bacteriology16912791285PubMedGoogle Scholar
  2. American Type Culture Collection, 1996. Catalogue of Filamentous Fungi at the ATCC, 19th edition. American Type Culture Collection.Google Scholar
  3. Appanna, V. D. 1988aAlteration of exopolysaccharide composition in Rhizobium meliloti JJ-1 exposed to manganeseFEMS Microbiololgy Letters50141144Google Scholar
  4. Appanna, V. D. 1988bStimulation of exopolysaccharide production in Rhizobium meliloti JJ-1 by manganeseBiotechnology Letters10205206Google Scholar
  5. Beveridge, T. J. 1989Role of cellular design in bacterial metal accumulation and mineralizationAnnual Review of Microbiology43147171PubMedGoogle Scholar
  6. Boogerd, R. C. & J. P. M. de Vrind, 1987. Manganese oxidation by Leptothrix discophora, Journal of Bacteriology 169: 489–494.Google Scholar
  7. Brown, J. G., Eychaner, J. H. 1996aResearch of Acidic Contamination of Ground Water and Surface Water, Pinal Creek BasinBrown, J.G.Favor, B. eds. Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near GlobeGeological Survey Water-Supply PaperU.S.Arizona. Chapter A,2466Google Scholar
  8. Brown, J. G., Eychaner, J. H. 1996bDistribution of Chemical Constituents in Surface Water, Pinal Creek Basin, ArizonaBrown, J.G.Favor, B. eds. Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near GlobeGeological Survey Water-Supply PaperU.S.6179Arizona. Chapter A,2466Google Scholar
  9. Choi, J., Hulseapple, S. M., Conklin, M. H., Harvey, J. W. 1998Modeling CO2 degassing and pH in a stream-aquifer systemJournal of Hydrology209297310Google Scholar
  10. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., Lappin-Scott, H. M. 1995Microbial biofilmsAnnual Review of Microbiology49711745PubMedGoogle Scholar
  11. Czekalla, C., Mevius, W., Hanert, H. 1985Quantitative removal of iron and manganese by microorganisms in rapid sand filters (in situ investigations)Water Supply3111123Google Scholar
  12. Ehrlich, H.L. 1996GeomicrobiologyMarcel DekkerNew York719Google Scholar
  13. Eychaner, J. H. 1991The Globe, Arizona research site–contaminants related to copper mining in a hydrologically integrated environmentMallard, G. E.Aronson, D. A. eds. U.S. Geological Survey Toxic Substances Hydrology ProgramGeological Survey Water-Resources Investigations ReportU.S.439447Proceedings of the Technical Meeting, Monterey CA, March 11–15. 91–4034Google Scholar
  14. Ferris, F. G., Schultze, S., Witten, T.C., Fyfe, W.S., Beveridge, T.J. 1989Metal interactions with microbial biofilms in acidic and neutral pH environmentsApplied and Environmental Microbiology5512491257PubMedGoogle Scholar
  15. Fortin, D., Ferris, F. G., Beveridge, T. J. 1997Surface-mediated mineral development by bacteria Reviews in Mineralogy35161180Banfield, J. F. & K. H. Nealson (eds), Geomicrobiology: Interactions Between Microbes and Minerals.Google Scholar
  16. Ghiorse, W. C. 1984aBacterial transformations of manganese in wetland environmentsKlub, M.J.Reddy, C.A. eds. Current Perspectives in Microbial Ecology American Society of MicrobiologistsWashington, DC615622Google Scholar
  17. Ghiorse, W. C. 1984bBiology of iron- and manganese-depositing bacteriaAnnual Review of Microbiology38515550Google Scholar
  18. Ghiorse, W. C., Chapnick, S. D. 1983Metal-depositing bacteria and the distribution of manganese and iron in swamp watersHallberg, R. eds. Environmental BiogeochemistryEcology BulletinStockholm367376vol 3Google Scholar
  19. Ghiorse, W. C., Hirsch, P. 1979An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteriaArchives of Microbiologie123213226Google Scholar
  20. Glenn, J. K., Akileswaran, L., Gold, M. H. 1986Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporiumArchives of Biochemistry and Biophysics251688696PubMedGoogle Scholar
  21. Glynn, P., Brown, J. 1996Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial informationSteefel, C.I.Lichtner, P.Oelkers, E. eds. Reviews in Mineralogy 34, Reactive Transport in Porous Media: General Principles and Application to Geochemical ProcessesMineralogical Society of AmericaWashington, DC377438Google Scholar
  22. Graveland, A., Heertjes, P. M. 1975Removal of manganese from ground water by heterogeneous autocatalytic oxidationTransactions of the Institution of Chemical Engineers53154164Google Scholar
  23. Greene, A. C., Madgwick, J. C. 1988Heterotrophic manganese-oxidizing bacteria from Groote Eylandt, AustraliaGeomicrobiology Journal6119127CrossRefGoogle Scholar
  24. Greene, A. C., Madgwick, J.C. 1990Formation of commercially useful manganese oxides using a microalgal facilitated bacterial oxidationAustralian Journal of Biotechnology4256259Google Scholar
  25. Harvey, J. W., Fuller, C. C. 1998Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balanceWater Resources Research34623636Google Scholar
  26. Hunt, C. D. & D. L. Smith, 1980. Conversion of dissolved manganese to particulate manganese during a diatom bloom: effects on the manganese cycle in the MERL microcosms. In Glesy, J. P. (ed.), Microcosms in Ecological Research, U.S. Technical Information Center, U.S. DOE Symposium Series 52: 850--868.Google Scholar
  27. Kepkay, P. E., Schwinghamer, P., Willar, T., Bowen, A. J. 1986Metabolism and metal binding by surface-colonizing bacteria: results of microgradient measurementsApplied and Environmental Microbiology51163170PubMedGoogle Scholar
  28. Knauer, K., Ahner, B., Xue, H. B., Sigg, L. 1998Metal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrationsEnvironmental Toxicology and Chemistry1724442452Google Scholar
  29. Lawrence, J. R., Swerhone, G. D. W., Kwong, Y. T. J. 1998Natural attenuation of aqueous metal contamination by an algal matCanadian Journal of Microbiology44825832Google Scholar
  30. Lind, C. J. 1991Manganese minerals and associated fine particulates in the Pinal Creek stream bedU.S. Geological Survey Water-Resources Investigations Report91–4034486491Google Scholar
  31. Lind, C. J., Hem, J. D. 1993Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: a mining-related acid drainage problemApplied Geochemistry86780Google Scholar
  32. Lind, C. J., Hem, J. D. 1996Manganese and Iron Oxide Deposits and Trace-Metal Associations in Stream Sediments, Pinal Creek Basin, ArizonaBrown, J. G.Favor, B. eds. Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near GlobeChapter E, U.S. Geological Survey Water-Supply Paper 2466Arizona81103Google Scholar
  33. Maki, J. S., Tebo, B. M., Palmer, F. E., Nealson, K. H., Staley, J. T. 1987The abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-like morphotypes in Lake Washington, USAFEMS Microbiology Letters452129Google Scholar
  34. Marble, J. C., T. L. Corley, M. H. Conklin & C. C. Fuller, 1999a. Environmental Factors Affecting Oxidation of Manganese in Pinal Creek. In Morganwalp, D. W. & H. T. Buxton (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, U.S. Geological Survey Water-Resources Investigations Report 99–4018A, 1: 173–183.Google Scholar
  35. Marble, J. C., T. L. Corley & M. H. Conklin, 1999b. Representative Plant and Algal Uptake of Metals near Globe, Arizona. In Morganwalp, D. W. & H. T. Buxton (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, U.S. Geological Survey Water-Resources Investigations Report 99–4018A, 1: 239–245.Google Scholar
  36. Morgan, J. J., Stumm, W. 1965Analytical chemistry of aqueous manganeseJournal of the American Water Works Association57107119Google Scholar
  37. Nealson, K. H. 1983The microbial manganese cycle, Chapter 7Krumbein, W.E. eds. Microbial GeochemistryBlackwell ScientificBoston, Massachusetts191221Google Scholar
  38. Neaville, C. C., Brown, J. G. 1994Hydrogeology and hydrologic system of Pinal Creek basin, Gila County, ArizonaWater-Resources Investigations Report WRI93–421232Google Scholar
  39. Patrick, F. M., Loutit, M. W. 1977The uptake of heavy metals by epiphytic bacteria on Alisma plantago-aquaticaWater Research10333335Google Scholar
  40. Peterson, N. P. 1962Geology and ore deposits of the Globe-Miami district, Arizona, U.SGeological Survey Professional Paper342151Google Scholar
  41. Phillips, P., Bender, J., Simms, R., Rodriquez-Eaton, S., Britt, C. 1995Manganese removal from acid coal-mine drainage by a pond containing green algae and microbial matWater Science and Technology31161170Google Scholar
  42. Richardson, L. L., Aguilar, C., Nealson, K. H. 1988Manganese oxidation in pH and O2 microenvironments produced by phytoplanktonLimnology and Oceanography33352363PubMedCrossRefGoogle Scholar
  43. Richardson, L. L., Stolzenbach, K. D. 1995Phytoplankton cell size and the development of microenvironmentsFEMS Microbiology Ecology16185192Google Scholar
  44. Robbins, E. I. 1998New roles for an old resource, Ferromanganese nodules assist mine cleanupGeotimes431417Google Scholar
  45. Robbins, E. I., 2001. Manganese Oxidation by Organisms in Pinal Creek, Arizona. <<http://mam.er.usgs.gov/mfs. html>>.Google Scholar
  46. Robbins, E. I., D. L. Brant & P. F. Ziemkiewicz, 1999a. Microbial, algal, and fungal strategies for manganese oxidation at a Shade Township Coal Mine, Somerset County, Penna.: 16th Annual Meeting, American Society of Surface Mining and Reclamation, Phoenix, AZ, Proceedings, Vol. 2: 634–640.Google Scholar
  47. Robbins, E. I., Corley, T. L., Conklin, M. H. 1999bManganese removal by the epilithic microbial consortium at Pinal Creek near Globe, ArizonaU.S. Geological Survey Water-Resources Investigations Report99–4018A247255Google Scholar
  48. Robbins, E.I., D’Agostino, J.P., Ostwald, J., Fanning, D.S., Carter, V., Hoven, R. 1992Manganese nodules and microbial oxidation of manganese in the Huntley Meadows wetland, Virginia, USACatena Supplement21172202Google Scholar
  49. Robbins, E. I., J. W. LaBaugh, D. A. Merk, R. S. Parkhurst, L. J. Puckett, D. O. Rosenberry, P. F. Schuster & P. A. Shelito, 1997a. Bacterial indicators of ground-water discharge: iron seeps in the Shingobee River and Crow Wing watersheds, Northern Minnesota. In Winter, T. C. (ed.), Hydrological and Biogeochemical Research in the Shingobee river Headwaters Area, north-central Minnesota. U.S. Geological Survey Water-Resources Investigations Report 96–4215: 177–185.Google Scholar
  50. Robbins, E. I., R. R. Maggard, E. J. Kirk, H. E. Belkin & H. T. Evans, Jr., 1997b. Manganese removal by chemical and microbial oxidation and the effect on benthic macroinvertebrates at a coal mine in Wayne County, western West Virginia. Proceedings, West Virginia Surface Mine Task Force Symposium, Morgantown, WV: 110–124.Google Scholar
  51. Rose, A. W., B. Means & P. J. Shah, 2003. Methods for passive removal of manganese from acid mine drainage. Proceedings 2003 West Virginia Surface Mine Drainage Task Force Symposium, 12 pp; Papers <<www.wvu.edu/~agexten/landrec/2003TFS/Rose03.pdf>>.Google Scholar
  52. Rousch, J. M., Sommerfeld, M. R. 1999Effect of manganese and nickel on growth of selected algae in pH buffered mediumWater Research3324482454Google Scholar
  53. Sheldon, S. P., Skelly, D. K. 1990Differential colonization and growth of algae and ferromanganese-depositing bacteria in a mountain streamJournal of Freshwater Ecology5475485Google Scholar
  54. Spindler, P. H., Sommerfeld, M. R. 1996Distribution of algae in Pinal Creek, Gila County, ArizonaJournal of the Arizona-Nevada Academy of Science2108117Google Scholar
  55. Stark, L. R., Williams, F. M., Wenerick, W. R., Wuest, P. J., Urban, C. 1996The effects of substrate type, surface water depth, and flow rate on manganese retention in mesocosm wetlandsJournal of Environmental Quality2597106CrossRefGoogle Scholar
  56. Starmach, K. 1972Flora Slodkowodna Polski, Tom 10, Chlorophyta III: Zielenice nitkowate: Ulothrichales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales, Chaetophorales, Trentepohliales, Siphonales, DichotomosiphonalesInstytut Botaniki, Varszawa, KrakowPolska Akademia Nauk750Google Scholar
  57. Stevens, S. E., Dionis, K., Stark, L. R. 1989Manganese and iron encrustation on green algae living in acid mine drainageHammer, D.A. eds. Constructed Wetlands for Wastewater Treatment, Municipal, Industrial and AgriculturalLewis PublishersChelsea, Michigan765773Google Scholar
  58. Stollenwerk, K. G. 1994Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, ArizonaApplied Geochemistry9353369Google Scholar
  59. Stollenwerk, K. G. 1996Simulation of Reactions Affecting Transport of Constituents in the Acidic Plume, Pinal Creek Basin, ArizonaBrown, J. G.Favor, B. eds. Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near GlobeChapter B, U.S. Geological Survey Water-Supply Paper: 2466Arizona2149Google Scholar
  60. Stuetz, R. M., Greene, A. C., Madgwick, J. C. 1996Microalgal-facilitated bacterial oxidation of manganeseJournal of Industrial Microbiology16267273Google Scholar
  61. Tarutis, W.J.,Jr., Unz, R. F. 1996Biogeochemical fate of coal mine drainage pollutants in constructed wetlandsCurrent Topics in Wetland Biogeochemistry24051Google Scholar
  62. Tebo, B. M., Emerson, S. 1985The effect of oxygen tension, Mn(II) concentration and temperature on the microbially catalyzed Mn(II) oxidation rate in a marine fjordApplied and Environmental Microbiology5012681273PubMedGoogle Scholar
  63. Tebo, B. M., W. C. Ghiorse, L. G. van Waasbergen, P. L. Siering & R. Caspi, 1997. Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. In Banfield, J. F. & K. H. Nealson (eds), Geomicrobiology: Interactions Between Microbes and Minerals. Reviews in Mineralogy 35: 225–266Google Scholar
  64. Tipping, E. 1984Temperature dependence of Mn(II) oxidation in lake waters: a test of biological involvementGeochimica et Cosmochimica Acta4813531356Google Scholar
  65. Vail, W.J., Riley, R. K. 1988Isolation and culture of a manganese-oxidizing bacterium from a man-made cattail wetland (abs.)U.S. Bureau of Mines Information Circular9183399Google Scholar
  66. Vandenabeele, J., Beer, D. de, Germonpre, R., Verstraet, W. 1992Manganese oxidation by microbial consortia from sand filterMicrobial Ecology2491108Google Scholar
  67. Walter, G. R. & J. R. Norris, 1991. Hydrochemical zoning in the Pinal Creek alluvium. In Mallard, G. E. & D. A. Aronson (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Monterey, California, March 11-15, 1991. U.S. Geological Survey Water Resources Investigations Report 91-4034: 516-519.Google Scholar
  68. Watzlaf, G. R. 1997Passive treatment of acid mine drainage in down-flow limestone systemsAmerican Society for Surface Mining and Reclamation,14th Annual Meeting, Austin, Texas611622Google Scholar
  69. Wilson, E. D., R. T. Moore & H. W. Pierce, 1959. Geologic Map of Gila County, Arizona, University of Arizona, Arizona Bureau of Mines, Tucson, Arizona.Google Scholar
  70. Wingender, J., Neu, T. R., Flemming, H. -C. 1999What are Bacterial Extracellular Polymeric SubstancesIn Wingender, J., T. R. Neu & H.-C. Flemming (eds), Microbial Extracellular Polymeric Substances? Chapter1, Springer-Verlag, New York115Google Scholar
  71. Wolzogen Kuhr, C. A. H. 1927Manganese in waterworksJournal of the American Water Works Association18131Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Geological SciencesSan Diego State UniversitySan DiegoUSA
  2. 2.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations