Skip to main content
Log in

Microdynamics and seasonal changes in manganese oxide epiprecipitation in Pinal Creek, Arizona

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Pinal Creek, Arizona, Mn oxyhydroxides (MnO x ) collect as thick precipitates on surface sediment, within the streambed, beneath algal mats, and on submerged and emergent plants and mosses. The proximate source of Mn is a thick, alluvial alkaline aquifer that was contaminated by past acid mine waste disposal practices associated with copper mines located upstream in the Globe–Miami area. Almost every organism in Pinal Creek is coated with MnO x . Some are actively precipitating manganese, and others are doing it passively. The variety and seasonality of epilithic biological processes resulting in Mn oxidation (epiprecipitation) was studied for more than a year by analyzing artificial substrates placed in surface water having different flows and different vegetation types and densities. Most epiprecipitation took place on the holdfasts of the green alga, Ulothrix sp., and the iron bacterium, Leptothrix discophora. Extensive patches of MnO x also coated extracellular polymeric substances of fungal hyphae and bacterial filaments. The dominant macroscopic precipitation was in the form of MnO x clumps on mosses, green algae, and cyanobacterial mats, consistent with precipitation by pH elevation during photosynthesis. Most oxidation occurred in the spring and summer, in agreement with thermal, biological, and chemical activity models. More biological oxidation occurred in swifter water, consistent with oxygen elevation models. The efficiency of this naturally occurring, diverse ecosystem suggests that remediation efforts to remove metal contaminants such as Mn should focus on creation of habitats that raise biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. F. Adams W. C. Ghiorse (1987) ArticleTitleCharacterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1 Journal of Bacteriology 169 1279–1285 Occurrence Handle3818545 Occurrence Handle1:CAS:528:DyaL2sXitV2rur0%3D

    PubMed  CAS  Google Scholar 

  • American Type Culture Collection, 1996. Catalogue of Filamentous Fungi at the ATCC, 19th edition. American Type Culture Collection.

  • V. D. Appanna (1988a) ArticleTitleAlteration of exopolysaccharide composition in Rhizobium meliloti JJ-1 exposed to manganese FEMS Microbiololgy Letters 50 141–144 Occurrence Handle1:CAS:528:DyaL1cXktlCqt70%3D

    CAS  Google Scholar 

  • V. D. Appanna (1988b) ArticleTitleStimulation of exopolysaccharide production in Rhizobium meliloti JJ-1 by manganese Biotechnology Letters 10 205–206 Occurrence Handle1:CAS:528:DyaL1cXhvVegu7o%3D

    CAS  Google Scholar 

  • T. J. Beveridge (1989) ArticleTitleRole of cellular design in bacterial metal accumulation and mineralization Annual Review of Microbiology 43 147–171 Occurrence Handle2679352 Occurrence Handle1:CAS:528:DyaL1MXmtFWmtb8%3D

    PubMed  CAS  Google Scholar 

  • Boogerd, R. C. & J. P. M. de Vrind, 1987. Manganese oxidation by Leptothrix discophora, Journal of Bacteriology 169: 489–494.

    Google Scholar 

  • J. G. Brown J. H. Eychaner (1996a) Research of Acidic Contamination of Ground Water and Surface Water, Pinal Creek Basin J.G. Brown B. Favor (Eds) Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near Globe Geological Survey Water-Supply Paper U.S.

    Google Scholar 

  • J. G. Brown J. H. Eychaner (1996b) Distribution of Chemical Constituents in Surface Water, Pinal Creek Basin, Arizona J.G. Brown B. Favor (Eds) Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near Globe Geological Survey Water-Supply Paper U.S. 61–79

    Google Scholar 

  • J. Choi S. M. Hulseapple M. H. Conklin J. W. Harvey (1998) ArticleTitleModeling CO2 degassing and pH in a stream-aquifer system Journal of Hydrology 209 297–310 Occurrence Handle1:CAS:528:DyaK1cXntVymt78%3D

    CAS  Google Scholar 

  • J. W. Costerton Z. Lewandowski D. E. Caldwell D. R. Korber H. M. Lappin-Scott (1995) ArticleTitleMicrobial biofilms Annual Review of Microbiology 49 711–745 Occurrence Handle8561477 Occurrence Handle1:CAS:528:DyaK2MXovVWjtbg%3D

    PubMed  CAS  Google Scholar 

  • C. Czekalla W. Mevius H. Hanert (1985) ArticleTitleQuantitative removal of iron and manganese by microorganisms in rapid sand filters (in situ investigations) Water Supply 3 111–123 Occurrence Handle1:CAS:528:DyaL28XnsVKktg%3D%3D

    CAS  Google Scholar 

  • H.L. Ehrlich (1996) Geomicrobiology Marcel Dekker New York

    Google Scholar 

  • J. H. Eychaner (1991) The Globe, Arizona research site–contaminants related to copper mining in a hydrologically integrated environment G. E. Mallard D. A. Aronson (Eds) U.S. Geological Survey Toxic Substances Hydrology Program Geological Survey Water-Resources Investigations Report U.S. 439–447

    Google Scholar 

  • F. G. Ferris S. Schultze T.C. Witten W.S. Fyfe T.J. Beveridge (1989) ArticleTitleMetal interactions with microbial biofilms in acidic and neutral pH environments Applied and Environmental Microbiology 55 1249–1257 Occurrence Handle16347914 Occurrence Handle1:CAS:528:DyaL1MXktlKguro%3D

    PubMed  CAS  Google Scholar 

  • D. Fortin F. G. Ferris T. J. Beveridge (1997) ArticleTitleSurface-mediated mineral development by bacteria Reviews in Mineralogy 35 161–180 Occurrence Handle1:CAS:528:DyaK2sXntVGms7o%3D

    CAS  Google Scholar 

  • W. C. Ghiorse (1984a) Bacterial transformations of manganese in wetland environments M.J. Klub C.A. Reddy (Eds) Current Perspectives in Microbial Ecology American Society of Microbiologists Washington, DC 615–622

    Google Scholar 

  • W. C. Ghiorse (1984b) ArticleTitleBiology of iron- and manganese-depositing bacteria Annual Review of Microbiology 38 515–550 Occurrence Handle1:CAS:528:DyaL2cXmtVOht74%3D

    CAS  Google Scholar 

  • W. C. Ghiorse S. D. Chapnick (1983) Metal-depositing bacteria and the distribution of manganese and iron in swamp waters R. Hallberg (Eds) Environmental Biogeochemistry Ecology Bulletin Stockholm 367–376

    Google Scholar 

  • W. C. Ghiorse P. Hirsch (1979) ArticleTitleAn ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria Archives of Microbiologie 123 213–226 Occurrence Handle1:CAS:528:DyaL3cXptVOlsQ%3D%3D

    CAS  Google Scholar 

  • J. K. Glenn L. Akileswaran M. H. Gold (1986) ArticleTitleMn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium Archives of Biochemistry and Biophysics 251 688–696 Occurrence Handle3800395 Occurrence Handle1:CAS:528:DyaL2sXks1eguw%3D%3D

    PubMed  CAS  Google Scholar 

  • P. Glynn J. Brown (1996) Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information C.I. Steefel P. Lichtner E. Oelkers (Eds) Reviews in Mineralogy 34, Reactive Transport in Porous Media: General Principles and Application to Geochemical Processes Mineralogical Society of America Washington, DC 377–438

    Google Scholar 

  • A. Graveland P. M. Heertjes (1975) ArticleTitleRemoval of manganese from ground water by heterogeneous autocatalytic oxidation Transactions of the Institution of Chemical Engineers 53 154–164 Occurrence Handle1:CAS:528:DyaE28XktlKqurY%3D

    CAS  Google Scholar 

  • A. C. Greene J. C. Madgwick (1988) ArticleTitleHeterotrophic manganese-oxidizing bacteria from Groote Eylandt, Australia Geomicrobiology Journal 6 119–127 Occurrence Handle10.1080/01490458809377829 Occurrence Handle1:CAS:528:DyaL1MXitV2itw%3D%3D

    Article  CAS  Google Scholar 

  • A. C. Greene J.C. Madgwick (1990) ArticleTitleFormation of commercially useful manganese oxides using a microalgal facilitated bacterial oxidation Australian Journal of Biotechnology 4 256–259

    Google Scholar 

  • J. W. Harvey C. C. Fuller (1998) ArticleTitleEffect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance Water Resources Research 34 623–636 Occurrence Handle1:CAS:528:DyaK1cXisFenu7w%3D

    CAS  Google Scholar 

  • Hunt, C. D. & D. L. Smith, 1980. Conversion of dissolved manganese to particulate manganese during a diatom bloom: effects on the manganese cycle in the MERL microcosms. In Glesy, J. P. (ed.), Microcosms in Ecological Research, U.S. Technical Information Center, U.S. DOE Symposium Series 52: 850--868.

  • P. E. Kepkay P. Schwinghamer T. Willar A. J. Bowen (1986) ArticleTitleMetabolism and metal binding by surface-colonizing bacteria: results of microgradient measurements Applied and Environmental Microbiology 51 163–170 Occurrence Handle16346966 Occurrence Handle1:CAS:528:DyaL28XosFWgsw%3D%3D

    PubMed  CAS  Google Scholar 

  • K. Knauer B. Ahner H. B. Xue L. Sigg (1998) ArticleTitleMetal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrations Environmental Toxicology and Chemistry 17 2444–2452 Occurrence Handle1:CAS:528:DyaK1cXnsFersLk%3D

    CAS  Google Scholar 

  • J. R. Lawrence G. D. W. Swerhone Y. T. J. Kwong (1998) ArticleTitleNatural attenuation of aqueous metal contamination by an algal mat Canadian Journal of Microbiology 44 825–832 Occurrence Handle1:CAS:528:DyaK1cXnvFyksbo%3D

    CAS  Google Scholar 

  • C. J. Lind (1991) ArticleTitleManganese minerals and associated fine particulates in the Pinal Creek stream bed U.S. Geological Survey Water-Resources Investigations Report 91–4034 486–491

    Google Scholar 

  • C. J. Lind J. D. Hem (1993) ArticleTitleManganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: a mining-related acid drainage problem Applied Geochemistry 8 67–80 Occurrence Handle1:CAS:528:DyaK3sXitlOquro%3D

    CAS  Google Scholar 

  • C. J. Lind J. D. Hem (1996) Manganese and Iron Oxide Deposits and Trace-Metal Associations in Stream Sediments, Pinal Creek Basin, Arizona J. G. Brown B. Favor (Eds) Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near Globe Chapter E, U.S. Geological Survey Water-Supply Paper 2466 Arizona 81–103

    Google Scholar 

  • J. S. Maki B. M. Tebo F. E. Palmer K. H. Nealson J. T. Staley (1987) ArticleTitleThe abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-like morphotypes in Lake Washington, USA FEMS Microbiology Letters 45 21–29 Occurrence Handle1:CAS:528:DyaL2sXhs1ahsr8%3D

    CAS  Google Scholar 

  • Marble, J. C., T. L. Corley, M. H. Conklin & C. C. Fuller, 1999a. Environmental Factors Affecting Oxidation of Manganese in Pinal Creek. In Morganwalp, D. W. & H. T. Buxton (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, U.S. Geological Survey Water-Resources Investigations Report 99–4018A, 1: 173–183.

  • Marble, J. C., T. L. Corley & M. H. Conklin, 1999b. Representative Plant and Algal Uptake of Metals near Globe, Arizona. In Morganwalp, D. W. & H. T. Buxton (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, U.S. Geological Survey Water-Resources Investigations Report 99–4018A, 1: 239–245.

  • J. J. Morgan W. Stumm (1965) ArticleTitleAnalytical chemistry of aqueous manganese Journal of the American Water Works Association 57 107–119 Occurrence Handle1:CAS:528:DyaF2MXkt1KqtQ%3D%3D

    CAS  Google Scholar 

  • K. H. Nealson (1983) The microbial manganese cycle, Chapter 7 W.E. Krumbein (Eds) Microbial Geochemistry Blackwell Scientific Boston, Massachusetts 191–221

    Google Scholar 

  • C. C. Neaville J. G. Brown (1994) ArticleTitleHydrogeology and hydrologic system of Pinal Creek basin, Gila County, Arizona Water-Resources Investigations Report WRI 93–4212 32

    Google Scholar 

  • F. M. Patrick M. W. Loutit (1977) ArticleTitleThe uptake of heavy metals by epiphytic bacteria on Alisma plantago-aquatica Water Research 10 333–335

    Google Scholar 

  • N. P. Peterson (1962) ArticleTitleGeology and ore deposits of the Globe-Miami district, Arizona, U.S Geological Survey Professional Paper 342 151

    Google Scholar 

  • P. Phillips J. Bender R. Simms S. Rodriquez-Eaton C. Britt (1995) ArticleTitleManganese removal from acid coal-mine drainage by a pond containing green algae and microbial mat Water Science and Technology 31 161–170 Occurrence Handle1:CAS:528:DyaK28Xhslyjug%3D%3D

    CAS  Google Scholar 

  • L. L. Richardson C. Aguilar K. H. Nealson (1988) ArticleTitleManganese oxidation in pH and O2 microenvironments produced by phytoplankton Limnology and Oceanography 33 352–363 Occurrence Handle11538363 Occurrence Handle1:CAS:528:DyaL1cXkvFygt7o%3D Occurrence Handle10.4319/lo.1988.33.3.0352

    Article  PubMed  CAS  Google Scholar 

  • L. L. Richardson K. D. Stolzenbach (1995) ArticleTitlePhytoplankton cell size and the development of microenvironments FEMS Microbiology Ecology 16 185–192 Occurrence Handle1:CAS:528:DyaK2MXktlCjtLk%3D

    CAS  Google Scholar 

  • E. I. Robbins (1998) ArticleTitleNew roles for an old resource, Ferromanganese nodules assist mine cleanup Geotimes 43 14–17

    Google Scholar 

  • Robbins, E. I., 2001. Manganese Oxidation by Organisms in Pinal Creek, Arizona. <<http://mam.er.usgs.gov/mfs. html>>.

  • Robbins, E. I., D. L. Brant & P. F. Ziemkiewicz, 1999a. Microbial, algal, and fungal strategies for manganese oxidation at a Shade Township Coal Mine, Somerset County, Penna.: 16th Annual Meeting, American Society of Surface Mining and Reclamation, Phoenix, AZ, Proceedings, Vol. 2: 634–640.

  • E. I. Robbins T. L. Corley M. H. Conklin (1999b) ArticleTitleManganese removal by the epilithic microbial consortium at Pinal Creek near Globe, Arizona U.S. Geological Survey Water-Resources Investigations Report 99–4018A 247–255

    Google Scholar 

  • E.I. Robbins J.P. D’Agostino J. Ostwald D.S. Fanning V. Carter R. Hoven ParticleVan (1992) ArticleTitleManganese nodules and microbial oxidation of manganese in the Huntley Meadows wetland, Virginia, USA Catena Supplement 21 172–202

    Google Scholar 

  • Robbins, E. I., J. W. LaBaugh, D. A. Merk, R. S. Parkhurst, L. J. Puckett, D. O. Rosenberry, P. F. Schuster & P. A. Shelito, 1997a. Bacterial indicators of ground-water discharge: iron seeps in the Shingobee River and Crow Wing watersheds, Northern Minnesota. In Winter, T. C. (ed.), Hydrological and Biogeochemical Research in the Shingobee river Headwaters Area, north-central Minnesota. U.S. Geological Survey Water-Resources Investigations Report 96–4215: 177–185.

  • Robbins, E. I., R. R. Maggard, E. J. Kirk, H. E. Belkin & H. T. Evans, Jr., 1997b. Manganese removal by chemical and microbial oxidation and the effect on benthic macroinvertebrates at a coal mine in Wayne County, western West Virginia. Proceedings, West Virginia Surface Mine Task Force Symposium, Morgantown, WV: 110–124.

  • Rose, A. W., B. Means & P. J. Shah, 2003. Methods for passive removal of manganese from acid mine drainage. Proceedings 2003 West Virginia Surface Mine Drainage Task Force Symposium, 12 pp; Papers <<www.wvu.edu/~agexten/landrec/2003TFS/Rose03.pdf>>.

  • J. M. Rousch M. R. Sommerfeld (1999) ArticleTitleEffect of manganese and nickel on growth of selected algae in pH buffered medium Water Research 33 2448–2454 Occurrence Handle1:CAS:528:DyaK1MXktVagtrc%3D

    CAS  Google Scholar 

  • S. P. Sheldon D. K. Skelly (1990) ArticleTitleDifferential colonization and growth of algae and ferromanganese-depositing bacteria in a mountain stream Journal of Freshwater Ecology 5 475–485 Occurrence Handle1:CAS:528:DyaK3MXktFCqsLY%3D

    CAS  Google Scholar 

  • P. H. Spindler M. R. Sommerfeld (1996) ArticleTitleDistribution of algae in Pinal Creek, Gila County, Arizona Journal of the Arizona-Nevada Academy of Science 2 108–117

    Google Scholar 

  • L. R. Stark F. M. Williams W. R. Wenerick P. J. Wuest C. Urban (1996) ArticleTitleThe effects of substrate type, surface water depth, and flow rate on manganese retention in mesocosm wetlands Journal of Environmental Quality 25 97–106 Occurrence Handle1:CAS:528:DyaK28XovVSitg%3D%3D Occurrence Handle10.2134/jeq1996.25197x

    Article  CAS  Google Scholar 

  • K. Starmach (1972) Flora Slodkowodna Polski, Tom 10, Chlorophyta III: Zielenice nitkowate: Ulothrichales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales, Chaetophorales, Trentepohliales, Siphonales, Dichotomosiphonales Instytut Botaniki, Varszawa, Krakow Polska Akademia Nauk 750

    Google Scholar 

  • S. E. Stevens K. Dionis L. R. Stark (1989) Manganese and iron encrustation on green algae living in acid mine drainage D.A. Hammer (Eds) Constructed Wetlands for Wastewater Treatment, Municipal, Industrial and Agricultural Lewis Publishers Chelsea, Michigan 765–773

    Google Scholar 

  • K. G. Stollenwerk (1994) ArticleTitleGeochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona Applied Geochemistry 9 353–369 Occurrence Handle1:CAS:528:DyaK2cXltFKqu7Y%3D

    CAS  Google Scholar 

  • K. G. Stollenwerk (1996) Simulation of Reactions Affecting Transport of Constituents in the Acidic Plume, Pinal Creek Basin, Arizona J. G. Brown B. Favor (Eds) Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Pinal Creek Basin Near Globe Chapter B, U.S. Geological Survey Water-Supply Paper: 2466 Arizona 21–49

    Google Scholar 

  • R. M. Stuetz A. C. Greene J. C. Madgwick (1996) ArticleTitleMicroalgal-facilitated bacterial oxidation of manganese Journal of Industrial Microbiology 16 267–273 Occurrence Handle1:CAS:528:DyaK28XktlWjsbk%3D

    CAS  Google Scholar 

  • W.J. Tarutis SuffixJr. R. F. Unz (1996) ArticleTitleBiogeochemical fate of coal mine drainage pollutants in constructed wetlands Current Topics in Wetland Biogeochemistry 2 40–51

    Google Scholar 

  • B. M. Tebo S. Emerson (1985) ArticleTitleThe effect of oxygen tension, Mn(II) concentration and temperature on the microbially catalyzed Mn(II) oxidation rate in a marine fjord Applied and Environmental Microbiology 50 1268–1273 Occurrence Handle16346931 Occurrence Handle1:CAS:528:DyaL28XnsVCrug%3D%3D

    PubMed  CAS  Google Scholar 

  • Tebo, B. M., W. C. Ghiorse, L. G. van Waasbergen, P. L. Siering & R. Caspi, 1997. Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. In Banfield, J. F. & K. H. Nealson (eds), Geomicrobiology: Interactions Between Microbes and Minerals. Reviews in Mineralogy 35: 225–266

  • E. Tipping (1984) ArticleTitleTemperature dependence of Mn(II) oxidation in lake waters: a test of biological involvement Geochimica et Cosmochimica Acta 48 1353–1356 Occurrence Handle1:CAS:528:DyaL2cXksF2kurg%3D

    CAS  Google Scholar 

  • W.J. Vail R. K. Riley (1988) ArticleTitleIsolation and culture of a manganese-oxidizing bacterium from a man-made cattail wetland (abs.) U.S. Bureau of Mines Information Circular 9183 399

    Google Scholar 

  • J. Vandenabeele D. de Beer R. Germonpre W. Verstraet (1992) ArticleTitleManganese oxidation by microbial consortia from sand filter Microbial Ecology 24 91–108 Occurrence Handle1:CAS:528:DyaK38XmsFOrt7Y%3D

    CAS  Google Scholar 

  • Walter, G. R. & J. R. Norris, 1991. Hydrochemical zoning in the Pinal Creek alluvium. In Mallard, G. E. & D. A. Aronson (eds), U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Monterey, California, March 11-15, 1991. U.S. Geological Survey Water Resources Investigations Report 91-4034: 516-519.

  • G. R. Watzlaf (1997) ArticleTitlePassive treatment of acid mine drainage in down-flow limestone systems American Society for Surface Mining and Reclamation, 14th Annual Meeting, Austin, Texas 611–622

    Google Scholar 

  • Wilson, E. D., R. T. Moore & H. W. Pierce, 1959. Geologic Map of Gila County, Arizona, University of Arizona, Arizona Bureau of Mines, Tucson, Arizona.

  • J. Wingender T. R. Neu H. -C. Flemming (1999) ArticleTitleWhat are Bacterial Extracellular Polymeric Substances In Wingender, J., T. R. Neu & H.-C. Flemming (eds), Microbial Extracellular Polymeric Substances? Chapter 1, Springer-Verlag, New York 1–15

    Google Scholar 

  • C. A. H. Wolzogen Kuhr (1927) ArticleTitleManganese in waterworks Journal of the American Water Works Association 18 1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanora I. Robbins.

Additional information

US Geological Survey, retired

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, E.I., Corley, T.L. Microdynamics and seasonal changes in manganese oxide epiprecipitation in Pinal Creek, Arizona. Hydrobiologia 534, 165–180 (2005). https://doi.org/10.1007/s10750-004-1503-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-004-1503-0

Keywords

Navigation