Power Technology and Engineering

, Volume 44, Issue 3, pp 195–201 | Cite as

Probable maximum flood (PMF): basic information and problems with the procedure used for its calculation in Russia

  • A. N. Zhirkevich
  • A. E. Asarin

A procedure is proposed for enhancement of the hydrologic safety of entities in the tail races of dams.


Maximum Flow Rate Spring Flood Angola Liquid Precipitation Probable Maximum Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hydromechanical Structures. Basic Positions. Construction Rules and Regulation (SNiP) 33-01–2003 [in Russian], Gosudarstvennyi Komitet Rossiiskoi Federatsii po Zhilishchnoi i Stroitel’noi Politike (GOSSTROI Rossii), Moscow (2004).Google Scholar
  2. 2.
    Determination of Basic Hydrologic Design Characteristics: Building Code (SP) 33-101–2003 [in Russian], Moscow (2004).Google Scholar
  3. 3.
    D. M. Hershfield, “Estimating the probable maximum precipitation, Proceedings of the American Society of Civil Engineers,” J. Hydraul. Div., 87 (1961).Google Scholar
  4. 4.
    Federal Instructions for the Safety of Dams, United States (1972).Google Scholar
  5. 5.
    International Symposium on Floods and Their Analyses [in Russian], Gidrometeoizdat, Leningrad (1969).Google Scholar
  6. 6.
    Hydrologic Engineering Center 1988. Flood Hydrograph Package User’s Manual, U.S. Army Corps of Engineers, Davis, California.Google Scholar
  7. 7.
    A. N. Zhirkevich, “Modern approaches to determination of characteristics of maximum runoff (design of the Shonla hydroproject on the Da River in Vietnam as an example),” in: Collection of Scientific Works of the Gidroproekt [in Russian], No. 159 (2000).Google Scholar
  8. 8.
    A. N. Zhirkevich, “Characteristic features of maximum-flow analysis in designing hydroprojects on rivers of Vietnam and Angola,” in: Absrts. of the Sixth All-Russian Hydrol. Conf. [in Russian], Gidrometeoizdat, St. Petersburg (2004).Google Scholar
  9. 9.
    A. A. Taratunin, Floods over the Land Mass of the Russian Federation [in Russian], Ministerstvo Priodnykh Resursov Rossiiskoi Federatsii – Federal’noe Agentstvo Vodnykh Resursov, Moscow (2006).Google Scholar
  10. 10.
    “Switzerland during the 20th century,” Int. J. Climatol., 25.Google Scholar
  11. 11.
    M. Brunetti, L. Bufoni, F. Mangianti, M. Maugeri, and T. Nanni, “Temperature, precipitation, and extreme events during the last century in Italy,” Global Planet Change, 40 (2004).Google Scholar
  12. 12.
    R. A. Pielke and M. W. Downton, “Precipitation and damaging floods: trends in the United States,” J. Climate, 13 (2000).Google Scholar
  13. 13.
    S. S. Roy and R. C. Balling, “Trends in extreme daily precipitation indices in India,” Int. J. Climatol., 24 (2004).Google Scholar
  14. 14.
    A. M. G. Klein Tank and G. P. Konnen, “Trends in indices of daily temperature and precipitation extremes in Europe,” Climate, 16 (2003).Google Scholar
  15. 15.
    Z. W. Kundzewicz, M. Radziejewskii, and I. Pinskwar, “Precipitation extremes in the changing climate of Europe,” Climate Res., 31 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. N. Zhirkevich
    • 1
  • A. E. Asarin
    • 1
  1. 1.JSC “Institut Gidroproekt”MoscowRussia

Personalised recommendations