Human Ecology

, Volume 46, Issue 2, pp 229–239 | Cite as

The Influence of Soil Quality and Market Orientation on Manioc (Manihot esculenta) Varietal Choice by Smallholder Farmers along the Lower Tapajós River, Pará, Brazil

  • Raquel Sousa Chaves
  • André Braga Junqueira
  • Charles R. Clement


Manioc (Manihot esculenta Crantz) is the main crop cultivated by traditional family farmers in Amazonia, generally managed in shifting cultivation systems comprising slash-and-burn clearing of plots, cropping for a year or so, followed by a fallow period. Besides restoring soil nutrients and organic matter, fallows are an important source of food and other resources (Junqueira et al.2010). Manioc has great economic and cultural importance, especially for traditional and indigenous communities who cultivate large numbers of local varieties (Emperaire and Eloy 2008; Heckler and Zent 2008; Fraser et al.2012; Lima et al.2012; Robert et al.2012; Lima et al.2013; Peña-Venegas et al.2014; Junqueira et al.2016a). The management systems and the diversity of manioc varieties cultivated are influenced by ecological, socioeconomic, and cultural factors, such as the type of soil (Fraser and Clement 2008; Fraser et al.2011a), soil fertility (Junqueira et al.2016a), culinary...



We thank the residents of the communities of the Resex Tapajós-Arapiuns for their active participation and help, and for sharing information with the research team; the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for financial support; the Chico Mendes Institute for Conservation and Biodiversity – ICMBIO for permission; Mariane Sousa Chaves for help with data collection; Wenceslau Teixeira and Newton Falcão for discussions about soils, and Peterson Campos for help with the map.

Compliance with Ethical Standards

This study was approved by the Ethics Committee for Research with Human Beings of the National Institute of Amazonian Research, process number 1008548 (2015). The study is also registered with the Chico Mendes Institute for Biodiversity Conservation (SISBIO), process number 47987 (2015). The permission of the communities was obtained at a meeting with residents in each of the communities involved. The first author is a resident of one of the communities involved in the study (Surucuá). The residents who agreed to participate signed an Informed Consent Form, which explained the project and that they could withdraw at any time, according to the guidelines and regulatory norms for research involving human subjects of the Brazilian National Health Council/Ministry of Health (CNS 1997).


  1. Albuquerque, U. P., Ramos, M. A., Lucena, R. F. R., and Alencar, N. L. (2014). Methods and techniques used to collect ethnobiological data. In Albuquerque, U. P., Cunha, L. V. F. C., Lucena, R. F. P., and Alves, R. N. N. (orgs.), Methods and Techniques in Ethnobiology and Ethnoecology (pp. 15–37). New York: Humana Press.Google Scholar
  2. Carvalho, L. J. C. B., Souza, C. R. B., Cascardo, J. C. M., Bloch-Junior, C., and Campos, L. (2004). Identification and characterization of novel cassava (Manihot esculenta Crantz) clone with high free-sugar content and novel starch. Plant Molecular Biology 56: 643–659.CrossRefGoogle Scholar
  3. CNS (Conselho Nacional de Saúde) (1997). Diretrizes e normas regulamentadoras de pesquisa envolvendo seres humanos, Brasília, Conselho Nacional de Saúde, p. 20.Google Scholar
  4. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (1997). Manual de métodos de análise de solos, Centro Nacional de Pesquisa de Solo, Rio de Janeiro.Google Scholar
  5. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (2013). Sistema brasileiro de classificação de solos, Centro Nacional de Pesquisa de Solos, Rio de Janeiro.Google Scholar
  6. Emperaire, L. (2002). Agrobiodiversidade em risco, o exemplo das mandiocas da Amazônia. Ciência Hoje 187: 28–33.Google Scholar
  7. Emperaire, L., and Eloy, L. (2008). A cidade - um foco de diversidade agrícola no Rio Negro (Amazonas, Brasil)? Boletim Museu Paraense Emílio Goeldi, Ciências Humanas 3, 195–211.Google Scholar
  8. Falcão, N., Moreira, A., and Comerford, N. B. (2009). A fertilidade dos solos de Terra Preta de Índio da Amazônia central. In Teixeira, W. G., Kern, D. C., Madari, B. E., Lima, H. N., and Woods, W. (Eds.), As Terras Pretas de Índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas (pp. 189–200). Manaus: Embrapa Amazônia Ocidental.Google Scholar
  9. Fraser, J. A., and Clement, C. R. (2008). Dark earths and manioc cultivation in central Amazonia: A window on pre-columbian agricultural systems? Boletim Museu Paraense Emílio Goeldi, Ciências Humanas 3: 175–194.CrossRefGoogle Scholar
  10. Fraser, J., Cardoso, T., Junqueira, A., Falcão, N. P. S., and Clement, C.R. (2009). Historical ecology and dark earths in whitewater and Blackwater landscapes: Comparing the middle Madeira and lower negro rivers. In Woods, W. I., Texeira, W. G., Lehmann, J., Steiner, C., WinklerPrins, A., and Rebellato, L. (Eds.), Amazonian dark earths: Wim Sombroek's vision (pp. 229–264). New York: Springer.Google Scholar
  11. Fraser, J. A., Junqueira, A. B., Kawa, N. C., Moraes, C. P., and Clement, C. R. (2011a). Crop diversity on anthropogenic dark earths in central Amazonia. Human Ecology 39: 395–406.CrossRefGoogle Scholar
  12. Fraser, J. A., Teixeira, W., Falcão, N., Woods, W., Lehmann, J., and Junqueira, A. B. (2011b). Anthropogenic soils in the Central Amazon: From categories to a continuum. Area 43: 264–273.CrossRefGoogle Scholar
  13. Fraser, J. A., Alves-Pereira, A., Junqueira, A. B., Peroni, N., and Clement, C. R. (2012). Convergent adaptations: Bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in central Amazonia. PLoS ONE 7: e43636.CrossRefGoogle Scholar
  14. Fraser, J. A., Cardoso, T., Steward, A., and Parry, L. (2017). Amazonian peasant livelihood differentiation as mutuality-market dialectics. The Journal of Peasant Studies.
  15. German, L. (2003). Ethnoscientific understandings of Amazonian dark earths. In Lehmann, J., Kern, D. C., Glaser, B., and Woods, W. (eds.), Amazonian dark earths: Origin, properties, management, Kluwer Academic Publishers, Dordrecht, pp. 179–201.Google Scholar
  16. Glaser, B., and Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (Terra Preta de Indio). Geochimica et Cosmochimica Acta 82: 39–51.CrossRefGoogle Scholar
  17. Gomes, D. M. C. (2008). O uso social da cerâmica de Parauá, Santarém, baixo amazonas: uma análise funcional. Arqueologia Sulamericana 4: 4–33.Google Scholar
  18. Halbwachs, M. (1990). A memória coletiva, Vértice, São Paulo, p. 189.Google Scholar
  19. Heckler, S., and Zent, S. (2008). Piaroa manioc varietals: Hyperdiversity or social currency? Human Ecology 36: 679–697.CrossRefGoogle Scholar
  20. Hiraoka, M., Yamamoto, S., Matsumoto, E., Nakamura, S., Falesi, I. C., and Baena, A. R. C. (2003). In Lehmann, J., Kern, D. C., Glaser, B., and Woods, W. (eds.), Amazonian dark earths: Origin, properties, management, Kluwer Academic Publishers, Dordrecht, pp. 387–406.Google Scholar
  21. IBGE (Instituto Brasileiro de Geografia e Estatística). (1976). Levantamento de Recursos Naturais - Folha SA. 21 – Santarém. Rio de Janeiro, p. 507.Google Scholar
  22. ICMBIO (Instituto Chico Mendes de conservação da biodiversidade). (2014). Plano de Manejo da Reserva Extrativista Tapajós-Arapiuns. Santarém, PA.Google Scholar
  23. Ioris, A. A. R. (2015). The production of poverty and the poverty of production in the Amazon: Reflections from those at the sharp end of development. Capitalism Nature Socialism 26: 176–192.CrossRefGoogle Scholar
  24. Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., and Bongers, F. (2015). Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology 103: 67–77.CrossRefGoogle Scholar
  25. Jakovac, C. C., Dutrieux, L. P., Siti, L., Peña-Claros, M., and Bongers, F. (2017). Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLoS ONE 12(7): e0181092.CrossRefGoogle Scholar
  26. Junqueira, A. B., Harvey, G. S., and Clement, C. R. (2010). Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. Biodiversity and Conservation 19: 1933–1961.CrossRefGoogle Scholar
  27. Junqueira, A. B., Stomph, T. J., Clement, C. R., and Struik, P. C. (2016a). Variation in soil fertility influences cycle dynamics and crop diversity in shifting cultivation systems. Agriculture, Ecosystems and Environment 215: 122–132.CrossRefGoogle Scholar
  28. Junqueira, A. B., Almekinders, C. J. M., Stomph, T. J., Clement, C. R., and Struik, P. C. (2016b). The role of Amazonian anthropogenic soils in shifting cultivation: Learning from farmers’ rationales. Ecology and Society 21: 12.CrossRefGoogle Scholar
  29. Kumar, B. M., and Nair, P. K. R. (2004). The enigma of tropical homegardens. Agroforestry Systems 61: 135–152.Google Scholar
  30. Lima, D., Steward, A., and Richers, B. T. (2012). Trocas, experimentações e preferências: um estudo sobre a dinâmica da diversidade da mandioca no médio Solimões, Amazonas. Boletim Museu Paraense Emílio Goeldi, Ciências Humanas 7: 371–396.CrossRefGoogle Scholar
  31. Lima, P. G. C., Silva, R. O., Coelho-Ferreira, M. R., and Pereira, J. L. G. (2013). Agrobiodiversidade e etnoconhecimento na Gleba Nova Olinda I, Pará: interações sociais e compartilhamento de germoplasma da mandioca (Manihot esculenta Crantz, Euphorbiaceae). Boletim Museu Paraense Emílio Goeldi, Ciências Humanas 8: 419–433.CrossRefGoogle Scholar
  32. Major, J., Clement, C. R., and Ditommaso, A. (2005). Influence of market orientation on food plant diversity of farms located on Amazonian dark earth in the region of Manaus, Amazonas, Brazil. Economic Botany 59: 77–86.CrossRefGoogle Scholar
  33. McCann, J. M. (1999). Before 1492 – The making of the pre-Columbian landscape: Part I. The environment. Ecological Restoration 17: 15–30.CrossRefGoogle Scholar
  34. Moura, E. F., Sousa, N. R., Moura, M. F., Dias, M. C., Souza, E. D., Neto, J. T. F., and Sampaio, J. E. (2016). Molecular characterization of accessions of a rare genetic resource: Sugary cassava (Manihot esculenta Crantz) from Brazilian Amazon. Genetic Resources and Crop Evolution.
  35. Oksanen, J., Guillaume-Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., and Wagner, H. (2015). Vegan: Community ecology package. R package version 2.3–1.
  36. Oliveira, N. F. B. (2006). The political significance of non-tribal indigenous youth’s talk on identity, land, and the florest environment: An Amazonian case study from the Arapiuns River, Brasil. A thesis submitted for the degree of doctor of philosophy of the Australian National University, p. 390.Google Scholar
  37. Peña-Venegas, C. P., Stomph, T. J., Verschoor, G., Lopez-Lavalle, L. A. B., and Struik, P. C. (2014). Differences in manioc diversity among five ethnic groups of the Colombian Amazon. Diversity 6: 792–826.CrossRefGoogle Scholar
  38. Peña-Venegas, C. P., Stomph, T. J., Verschoor, G., Echeverri, J. A., and Struik, P. C. (2016). Classification and use of natural and anthropogenic soils by indigenous communities of the upper Amazon region of Colombia. Human Ecology 44: 1–15.CrossRefGoogle Scholar
  39. Peroni, N., and Hanazaki, N. (2002). Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivations systems in the Brazilian Atlantic Forest. Agriculture, Ecosystems and Environment 92: 171–183.CrossRefGoogle Scholar
  40. Peyre, A., Guidal, A., Wiersum, K. F., and Bongers, F. (2006). Dynamics of homegarden structure and function in Kerala, India. Agroforestry Systems 66: 101–115.CrossRefGoogle Scholar
  41. R Core Team. (2015). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL
  42. Robert, P., Garcés, C. L., Laques, A. E., and Coelho-Ferreira, M. (2012). A beleza das roças: agrobiodiversidade Mebêngôkre-Kayapó em tempos de globalização. Boletim do Museu Paraense Emílio Goeldi, Ciências Humanas 7: 339–369.CrossRefGoogle Scholar
  43. SNUC (Sistema Nacional de Conservação da Natureza). (2000). Lei 9.985 de 18 de julho de 2000. Brasília: Ministério do Meio Ambiente.Google Scholar
  44. Vaz-Filho, F. A. (1997). Indicadores da sustentabilidade de comunidades ribeirinhas da Amazônia oriental. Dissertação de Mestrado apresentada no Curso de Pós-Graduação em Desenvolvimento. Agricultura e Sociedade – CPDA/UFRRJ, Rio de Janeiro, p. 288.Google Scholar
  45. Villa, T. C. C., Maxted, N., Scholten, M., and Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources 3: 373–384.CrossRefGoogle Scholar
  46. Woods, W. I., and McCann, J. M. (1999). The anthropogenic origin and persistence of Amazonian dark earths. Conference of Latin Americanist Geographers 25: 7–14.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raquel Sousa Chaves
    • 1
  • André Braga Junqueira
    • 2
    • 3
    • 4
  • Charles R. Clement
    • 5
  1. 1.Programa de Pós-graduação em BotânicaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.International Institute for SustainabilityRio de JaneiroBrazil
  3. 3.Centre for Conservation and Sustainability Science (CSRio), Department of Geography and the EnvironmentPontificial Catholic University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Soil QualityWageningen University and ResearchWageningenThe Netherlands
  5. 5.Instituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations