Human Ecology

, Volume 41, Issue 1, pp 7–20 | Cite as

The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD+ in the Lao PDR

  • Daniel Müller
  • Stefan Suess
  • Anja A. Hoffmann
  • Georg Buchholz


Shifting cultivation is a dominant land-use system in Laos, and fire is the tool commonly used to clear fallow vegetation for subsequent cultivation. We assessed the feasibility of active fire data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for monitoring fires in Laos. Specifically, we investigated the potential of the active fire data as input into monitoring, reporting and verification (MRV) systems to assess the effectiveness of measures related to Reducing Emissions from Deforestation and Forest Degradation plus the enhancement of forest carbon stocks (REDD+). Our qualitative and quantitative accuracy assessments of the fire data yielded mixed results with varying degrees of undetected fires and false detections. Hence, at IPCC Tier 3, the uncertainties inherent in the detection accuracy become too large. Active fire data can be valuable for supporting national-level MRV at Tier 2 in combination with auxiliary data for characterizing fire-dependent local land-use systems, such as shifting cultivation.


MODIS Fire monitoring REDD MRV Slash and burn Laos 



This research was supported by the Climate Protection through Avoided Deforestation Project (CliPAD) with funding from the German Ministry for Economic Cooperation and Development (BMZ) through the German International Cooperation (GIZ), implemented by the Department of Forestry of the Lao PDR. We acknowledge support from the project entitled Impacts of Reducing Emissions from Deforestation and Forest Degradation and Enhancing Carbon Stocks (I-REDD+). I-REDD + is funded by the European Community’s Seventh Framework Research Programme. More information can be found on the web site: We particularly thank Dirk Pflugmacher, Gernot Rücker and two anonymous reviewers for their excellent comments on earlier versions of this paper. We are indebted to Patrick Hostert, Andreas Heinimann, Gabriel Eickhoff, Kasper Hurni and Conny Hett for comments, discussions and support. We also thank Kasper, Conny and Anouxay Phommalath as well as the volunteers from “Weltwärts” for the collection of ground control points. Discussions on the Google group LaoFAB have generated a number of highly valuable responses, and we acknowledge all experts who replied, particularly the contributions by Dirk Van Gansberghe and Oliver Ducourtieux. Finally, we gratefully acknowledge the Participatory Land and Forest Management Project for Reducing Deforestation in Lao PDR (PAREDD) of the Japan International Cooperation Agency (JICA), which provided the plot-level dataset.


  1. Andreae, M. O., and Merlet, P. (2001). Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles 15: 955–966.CrossRefGoogle Scholar
  2. Aragao, L. E. O. C., and Shimabukuro, Y. E. (2010). The Incidence of Fire in Amazonian Forests with Implications for REDD. Science 328: 1275–1278.CrossRefGoogle Scholar
  3. Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F. (2010). High-Resolution Forest Carbon Stocks and Emissions in the Amazon. Proceedings of the National Academy of Sciences 107: 16738–16742.CrossRefGoogle Scholar
  4. Baker, P. J., and Bunyavejchewin, S. (2009). Fire behavior and fire effects across the forest landscape of continental Southeast Asia. In Cochrane, M. A. (ed.), Tropical Fire Ecology. Springer, Berlin Heidelberg, pp. 311–334.CrossRefGoogle Scholar
  5. Balch, J. K., Nepstad, D. C., Brando, P. M., and Alencar, A. (2010). Comment on “The Incidence of Fire in Amazonian Forests with Implications for REDD”. Science 330: 1627.CrossRefGoogle Scholar
  6. Ballhorn, U., Siegert, F., Mason, M., and Limin, S. (2009). Derivation of Burn Scar Depths and Estimation of Carbon Emissions with LIDAR in Indonesian Peatlands. Proceedings of the National Academy of Sciences 106: 21213–21218.CrossRefGoogle Scholar
  7. Boschetti, L., and Roy, D. P. (2008). Defining a Fire Year for Reporting and Analysis of Global Interannual Fire Variability. Journal of Geophysical Research 113: G03020.CrossRefGoogle Scholar
  8. Bruun, T., de Neergaard, A., Lawrence, D., and Ziegler, A. (2009). Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Human Ecology 37: 375–388.CrossRefGoogle Scholar
  9. Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 250: 1669–1678.CrossRefGoogle Scholar
  10. Csiszar, I. A., Morisette, J. T., and Giglio, L. (2006). Validation of Active Fire Detection from Moderate-Resolution Satellite Sensors: The MODIS Example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing 44: 1757–1764.CrossRefGoogle Scholar
  11. Davies, D. K., Ilavajhala, S., Wong, M. M., and Justice, C. O. (2009). Fire Information for Resource Management System: Archiving and Distributing MODIS Active Fire Data. IEEE Transactions on Geoscience and Remote Sensing 47: 72–79.CrossRefGoogle Scholar
  12. DeFries, R. (2008). Terrestrial Vegetation in the Coupled Human-Earth System: Contributions of Remote Sensing. Annual Review of Environment and Resources 33: 369–390.CrossRefGoogle Scholar
  13. Denman, K. L., Brasseur, G., Chidthaisong, A., Ciaism, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, P. L. d. S., Wofsy, S. C., and Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.Google Scholar
  14. Diggle, P. (1985). A Kernel Method for Smoothing Point Process Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 34: 138–147.Google Scholar
  15. Douangboupha, B., Aplin, K. P., and Singleton, G. R. (2002). Rodent outbreaks in the uplands of Laos: analysis of historical patterns and the identity of nuu khii. In Singleton, G. R., Hinds, L. A., Krebs, C. J., and Spratt, D. M. (eds.), Rats, Mice and People: Rodent Biology and Management. Australian Centre for International Agricultural Research, Canberra.Google Scholar
  16. Eva, H., and Lambin, E. F. (2000). Fires and Land-Cover Change in the Tropics:A Remote Sensing Analysis at the Landscape Scale. Journal of Biogeography 27: 765–776.CrossRefGoogle Scholar
  17. Giglio, L. (2010). MODIS Collection 5 Active Fire Product User’s Guide Version 2.4. Science Systems and Applications, Inc., University of Maryland, Department of Geography.Google Scholar
  18. Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment 87: 273–282.CrossRefGoogle Scholar
  19. Giglio, L., Csiszar, I., and Justice, C. O. (2006a). Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors. Journal of Geophysical Research 111: G02016.CrossRefGoogle Scholar
  20. Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P. (2006b). Global Estimation of Burned Area Using MODIS Active Fire Observations. Atmospheric Chemistry and Physics 6: 957–974.CrossRefGoogle Scholar
  21. GOFC-GOLD (2009). A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Caused by Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. Natural Resources Canada, Alberta, Canada.Google Scholar
  22. Goldammer, J. (2006). Fire ecology of the recent anthropocene. In Ehlers, E., and Krafft, T. (eds.), Earth System Science in the Anthropocene. Springer, Berlin Heidelberg, pp. 63–85.CrossRefGoogle Scholar
  23. Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., and Stewart, S. I. (2008). Detection Rates of the MODIS Active Fire Product in the United States. Remote Sensing of Environment 112: 2656–2664.CrossRefGoogle Scholar
  24. Hurni, K., Hett, C., Heinimann, A., Messerli, P., and Wiesmann, U. (this issue). Dynamics of Shifting Cultivation Landscapes in Northern Lao PDR Between 2000 and 2009 Based on an Analysis of MODIS Time Series and Landsat Images. Human Ecology.Google Scholar
  25. Justice, C., Giglio, L., Boschetti, L., Roy, D., Csiszar, I., Morisette, J., and Kaufman, Y. (2006). MODIS Fire Products Algorithm Theoretical Background Document. (last accessed 28 April 2010).
  26. Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W. (1998). Potential Global Fire Monitoring from EOS-MODIS. Journal of Geophysical Research 103: 32215–32238.CrossRefGoogle Scholar
  27. Koren, I., Remer, L. A., and Longo, K. (2007). Reversal of Trend of Biomass Burning in the Amazon. Geophysical Research Letters 34: L20404.CrossRefGoogle Scholar
  28. Langner, A., and Siegert, F. (2009). Spatiotemporal Fire Occurrence in Borneo over a Period of 10 years. Global Change Biology 15: 48–62.CrossRefGoogle Scholar
  29. Lee, T. F., Miller, S. D., Schueler, C., and Miller, S. (2006). NASA MODIS Previews NPOESS VIIRS Capabilities. Weather and Forecasting 21: 649–655.CrossRefGoogle Scholar
  30. London, S. (2003). Community-based fire management in Lao People’s Democratic Republic: past, present and future. In FAO, 97-118 (ed.), Community-Based Fire Management: Case Studies from China, The Gambia, Honduras, India, the Lao People’s Democratic Republic and Turkey. FAO Regional Office for Asia and the Pacific, Bangkok, pp. 97–118.Google Scholar
  31. Maniatis, D., and Mollicone, D. (2010). Options for Sampling and Stratification for National Forest Inventories to Implement REDD+ under the UNFCCC. Carbon Balance and Management 5: 9.CrossRefGoogle Scholar
  32. Messerli, P., Heinimann, A., and Epprecht, M. (2009). Finding Homogeneity in Heterogeneity—A New Approach to Quantifying Landscape Mosaics Developed for the Lao PDR. Human Ecology 37: 291–304.CrossRefGoogle Scholar
  33. Miettinen, J., Langner, A., and Siegert, F. (2007). Burnt Area Estimation for the Year 2005 in Borneo Using Multi-Resolution Satellite Imagery. International Journal of Wildland Fire 16: 45–53.CrossRefGoogle Scholar
  34. Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS Active Fire Product over Southern Africa with ASTER Data. International Journal of Remote Sensing 26: 4239–4264.CrossRefGoogle Scholar
  35. Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., and Limin, S. (2002). The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature 420: 61–65.CrossRefGoogle Scholar
  36. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Wagner , F. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry (last accessed 20 March 2008).
  37. Ramanathan, V., and Carmichael, G. (2008). Global and Regional Climate Changes due to Black Carbon. Nature Geosciences 1: 221–227.CrossRefGoogle Scholar
  38. Roy, D. P., Lewis, P. E., and Justice, C. O. (2002). Burned Area Mapping Using Multi-Temporal Moderate Spatial Resolution Data–A Bi-Directional Reflectance Model-Based Expectation Approach. Remote Sensing of Environment 83: 263–286.CrossRefGoogle Scholar
  39. Roy, D. P., Boschetti, L., Justice, C. O., and Ju, J. (2008). The Collection 5 MODIS Burned Area Product – Global Evaluation by Comparison with the MODIS Active Fire Product. Remote Sensing of Environment 112: 3690–3707.CrossRefGoogle Scholar
  40. Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions 9: 1–26.CrossRefGoogle Scholar
  41. Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS Active Fire Detection Products using ASTER and ETM+ Data. Remote Sensing of Environment 112: 2711–2726.CrossRefGoogle Scholar
  42. Siegert, F., Ruecker, G., Hinrichs, A., and Hoffmann, A. A. (2001). Increased Damage from Fires in Logged Forests during Droughts caused by El Nino. Nature 414: 437–440.CrossRefGoogle Scholar
  43. Tanpipat, V., Honda, K., and Nuchaiya, P. (2009). MODIS Hotspot Validation over Thailand. Remote Sensing 1: 1043–1054.CrossRefGoogle Scholar
  44. Tansey, K., Beston, J., Hoscilo, A., Page, S. E., and Paredes Hernández, C. U. (2008). Relationship between MODIS Fire Hot Spot Count and Burned Area in a Degraded Tropical Peat Swamp Forest in Central Kalimantan, Indonesia. Journal of Geophysical Research 113: D23112.CrossRefGoogle Scholar
  45. van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson, R. B., Collatz, G. J., and Randerson, J. T. (2009). CO2 Emissions from Forest Loss. Nature Geosciences 2: 737–738.CrossRefGoogle Scholar
  46. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T. (2010). Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmospheric Chemistry and Physical Discussion 10: 16153–16230.CrossRefGoogle Scholar
  47. Van Gansberghe, D. (2005). Shifting cultivation systems and practices in the Lao PDR: A sourcebook. In NAFRI, NAFES & NUOL (eds.). Improving Livelihoods in the Uplands of the Lao PDR. Vientiane, Lao PDR.Google Scholar
  48. Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An Approach to Estimate Global Biomass Burning Emissions of Organic and Black Carbon from MODIS Fire Radiative Power. Geophysical Research Letters 114: D18205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Müller
    • 1
    • 2
  • Stefan Suess
    • 2
  • Anja A. Hoffmann
    • 3
  • Georg Buchholz
    • 4
  1. 1.Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)Halle (Saale)Germany
  2. 2.Geography Department, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Independent Consultant on Natural Resources & Fire ManagementSinsheimGermany
  4. 4.Climate Protection through Avoided Deforestation (CliPAD), Technical Cooperation Module, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)Department of Forestry, That Dam CampusVientiane CapitalLao People’s Democratic Republic

Personalised recommendations