Husserl Studies

, Volume 22, Issue 3, pp 193–222 | Cite as

Husserl’s philosophy of mathematics: its origin and relevance

Original Paper


This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.


Husserl Logic Mathematics Manifold Riemann Bourbaki Platonism Zermelo-Russell Paradox 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachelard, S. (1957). La Logique de Husserl. Paris: PUF.Google Scholar
  2. 2.
    Bourbaki, N. (1949). Foundations of mathematics for the working mathematician. The Journal of Symbolic Logic, 14(4), 1–8.CrossRefGoogle Scholar
  3. 3.
    Bourbaki, N. (1950). The architecture of mathematics. American Mathematical Monthly, 57, 221–232.CrossRefGoogle Scholar
  4. 4.
    Bourbaki, N. (1966). ÉlÉments des MathÉmatiques: ThÉorie des Ensembles, Fascicule XVII. Paris: Hermann.Google Scholar
  5. 5.
    Bourbaki, N. (1966). ÉlÉments des MathÉmatiques: ThÉorie des Ensembles, Fascicule XXII. Paris: Hermann.Google Scholar
  6. 6.
    Cantor, G. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, 1932, reprint, Georg Olms, Hildesheim 1966.Google Scholar
  7. 7.
    Carnap, R. Der Raum, Kant-Studien (Ergänzungsheft 56) 1922, reprint Topos Verlag, Vaduz 1991.Google Scholar
  8. 8.
    Carnap, R. Der logische Aufbau der Welt, 1928, third edition, Felix Meiner 1961.Google Scholar
  9. 9.
    Carnap, R. Logische Syntax der Sprache, 1934, expanded English edition, Routledge, London 1937, reprint, Open Court, Chicago et al., 2003.Google Scholar
  10. 10.
    Dahlstrom, Daniel O. (Ed.) (2003). Husserl’s Logical Investigations, Kluwer: Dordrecht.Google Scholar
  11. 11.
    Da Silva, J. J. (1998). Husserl’s conception of logic. Manuscrito, XXII(2), 367–387.Google Scholar
  12. 12.
    Da Silva, J. J. (2000). Husserl’s two notions of completeness. Synthese, 125, 417–438.CrossRefGoogle Scholar
  13. 13.
    Da Silva, J. J. (2000). The many senses of completeness. Manuscrito, XXIII (2), 41–60.Google Scholar
  14. 14.
    Field, H. (1989). Realism, Mathematics and Modality. Oxford: Blackwell.Google Scholar
  15. 15.
    Fisette, D. (Ed.) (2003). Husserl’s Logical Investigations Reconsidered, Kluwer: Dordrecht.Google Scholar
  16. 16.
    Frege, G. Begriffschrift, 1879, reprint Georg Olms, Hildesheim 1964.Google Scholar
  17. 17.
    Frege, G. Die Grundlagen der Arithmetik, 1884, Centenarausgabe, Felix Meiner, Hamburg 1986.Google Scholar
  18. 18.
    Frege, G. Grundgesetze der Arithmetik I, 1893, II, 1903, reprint in one volume Georg Olms 1962.Google Scholar
  19. 19.
    Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. 1931, reprint with a parallel English translation in Kurt Gödel, Collected Works I, 1986, pp. 144–195.Google Scholar
  20. 20.
    Hill, C. O. Incomplete Symbols, Dependent Meanings and Paradox. In Daniel, O., Dahlstrom (Eds.), Husserl’s Logical Investigations. pp. 69–93.Google Scholar
  21. 21.
    Hill, C. O., & Rosado Haddock, G. E. Husserl or Frege?: Meaning, objectivity and mathematics. Open Court, Chicago & La Salle 2000, paperback edition 2003.Google Scholar
  22. 22.
    Husserl, E. Über den Begriff der Zahl, 1887, reprinted as Appendix A in Husserliana XII, 1970, pp. 289–339.Google Scholar
  23. 23.
    Husserl, E. Philosophie der Arithmetik, 1891, Husserliana XII, M. Nijhoff, The Hague 1970.Google Scholar
  24. 24.
    Husserl, E. Besprechung von E. Schröder, ‘Vorlesungen über die Algebra der Logik I’, 1891, reprinted in Aufsätze und Rezensionen (1890–1910), Husserliana XXII, 1979, pp.3–43.Google Scholar
  25. 25.
    Husserl, E. Logische Untersuchungen, 1900–1901, Husserliana XVIII (1975) & XIX (1984), M.␣Nijhoff, The Hague.Google Scholar
  26. 26.
    Husserl, E. (1974). Formale und transzendentale Logik, 1929, Husserliana XVII. The Hague: M. Nijhoff.Google Scholar
  27. 27.
    Husserl, Ed. (1958). Die Idee der Phänomenologie, Husserliana II. The Hague: M. Nijhoff.Google Scholar
  28. 28.
    Husserl, E. (1979). Aufsätze und Rezensionen (1890–1910), Husserliana XXII. The Hague: M.␣Nijhoff.Google Scholar
  29. 29.
    Husserl, E. (1983). Studien zur Arithmetik und Geometrie, Husserliana XXI. The Hague: M.␣Nijhoff.Google Scholar
  30. 30.
    Husserl, E. (1984). Einleitung in die Logik und Erkenntnistheorie Husserliana XXIV. Dordrecht: Kluwer.Google Scholar
  31. 31.
    Husserl, E. (1996). Logik und allgemeine Wissenschaftstheorie, Husserliana XXX. Dordrecht: Kluwer.Google Scholar
  32. 32.
    Husserl, E. (1975). Introduction to the Logical Investigations. The Hague: M. Nijhoff.Google Scholar
  33. 33.
    Husserl, Edmund. (2003). Alte und neue Logik: Vorlesungen 1908/09. Dordrecht: Kluwer.Google Scholar
  34. 34.
    Husserl, E. Manuskript A I 35 (α) 1912, (β) 1920 und später.Google Scholar
  35. 35.
    Kant, I. Kritik der reinen Vernunft 1781, 2nd edn. 1787, reprint of both versions, edited by R.␣Schmidt, Felix Meiner, Hamburg 1930, 3rd edn. 1990.Google Scholar
  36. 36.
    Mac Lane, S. (1971). Categories for the Working Mathematician. New York: Springer.Google Scholar
  37. 37.
    Mac Lane, S. (1986). Mathematics: Form and Function. New York: Springer.Google Scholar
  38. 38.
    Majer, U. (1997). Husserl and Hilbert on completeness: A neglected chapter in early twenty century foundation of mathematics. Synthese, 110, 37–56.CrossRefGoogle Scholar
  39. 39.
    Mancosu, P., & Ryckman, T.A. (2002). Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl’. Philosophia Mathematica, 10(2), 130–202.Google Scholar
  40. 40.
    Riemann, B. Über die Hypothesen, welche der Geometrie zugrunde liegen, 1867, third edition, Berlin 1923, reprint, Chelsea, New York 1973.Google Scholar
  41. 41.
    Rosado Haddock, G. E. (1973). Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung, (Diss.), Bonn.Google Scholar
  42. 42.
    Rosado Haddock, G. E. (1987). Husserl’s Epistemology of Mathematics and the Foundation of Platonism in Mathematics. Husserl Studies 4, No. 2, reprint in Claire, O. Hill & Guillermo E. Rosado Haddock, Husserl or Frege?: Meaning, Objectivity and Mathematics. pp. 221–239.Google Scholar
  43. 43.
    Rosado Haddock, G. E. (1997). Husserl’s relevance for the philosophy and foundations of mathematics. Axiomathes, VIII(1–3), 125–142.Google Scholar
  44. 44.
    Rosado Haddock, G. E. (2000). The structure of the prolegomena. Manuscrito, XXIII(2), 61–99.Google Scholar
  45. 45.
    Rosado Haddock, G. E. Review of Edmund Husserl, Alte und neue Logik: Vorlesungen 1908/09. forthcoming in Husserl Studies.Google Scholar
  46. 46.
    Schmit, R. (1981). Husserls Philosophie der Mathematik, Bouvier, Bonn.Google Scholar
  47. 47.
    Scholz, E. (1980). Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré, Boston.Google Scholar
  48. 48.
    Schuhmann, E., & Scuhmann, K. (2001) Husserl’s Manuskripte zu seinem Göttinger Doppelvortrag von 1901. Husserl Studies, 7, 87–123.CrossRefGoogle Scholar
  49. 49.
    Schuhmann, K. (1977). Husserl-Chronik. The Hague: M. Nijhoff.Google Scholar
  50. 50.
    Tarski, A. Der Wahrheitsbegriff in den formalisierten Sprachen 1935 (expanded version of the Polish original 1933), English translation in Alfred Tarski, Logic, Semantics, Metamathematics 1956, second edition, Hackett, Indiana 1983, pp. 152–278.Google Scholar
  51. 51.
    Tieszen, R. (1989). Mathematical Intuition. Dordrecht: Kluwer.Google Scholar
  52. 52.
    Torretti, R. (1978). Philosophy of Geometry from Riemann to Poincaré, Reidel, Dordrecht.Google Scholar
  53. 53.
    Weyl, H. Das Kontinuum, 1918, reprint New York, Chelsea 1960, 1973.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Puerto RicoRio PiedrasUSA

Personalised recommendations