# Husserl’s philosophy of mathematics: its origin and relevance

Original Paper

First Online:

Accepted:

- 225 Downloads
- 5 Citations

## Abstract

This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.

## Keywords

Husserl Logic Mathematics Manifold Riemann Bourbaki Platonism Zermelo-Russell Paradox## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Bachelard, S. (1957).
*La Logique de Husserl*. Paris: PUF.Google Scholar - 2.Bourbaki, N. (1949). Foundations of mathematics for the working mathematician.
*The Journal of Symbolic Logic, 14*(4), 1–8.CrossRefGoogle Scholar - 3.Bourbaki, N. (1950). The architecture of mathematics.
*American Mathematical Monthly, 57*, 221–232.CrossRefGoogle Scholar - 4.Bourbaki, N. (1966).
*ÉlÉments des MathÉmatiques:**ThÉorie des Ensembles, Fascicule XVII*. Paris: Hermann.Google Scholar - 5.Bourbaki, N. (1966).
*ÉlÉments des MathÉmatiques:**ThÉorie des Ensembles, Fascicule XXII*. Paris: Hermann.Google Scholar - 6.Cantor, G. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, 1932, reprint, Georg Olms, Hildesheim 1966.Google Scholar
- 7.Carnap, R.
*Der Raum, Kant-Studien*(Ergänzungsheft 56) 1922, reprint Topos Verlag, Vaduz 1991.Google Scholar - 8.Carnap, R.
*Der logische Aufbau der Welt*, 1928, third edition, Felix Meiner 1961.Google Scholar - 9.Carnap, R.
*Logische Syntax der Sprache*, 1934, expanded English edition, Routledge, London 1937, reprint, Open Court, Chicago et al., 2003.Google Scholar - 10.Dahlstrom, Daniel O. (Ed.) (2003).
*Husserl’s Logical Investigations*, Kluwer: Dordrecht.Google Scholar - 11.Da Silva, J. J. (1998). Husserl’s conception of logic.
*Manuscrito, XXII*(2), 367–387.Google Scholar - 12.Da Silva, J. J. (2000). Husserl’s two notions of completeness.
*Synthese, 125*, 417–438.CrossRefGoogle Scholar - 13.Da Silva, J. J. (2000). The many senses of completeness.
*Manuscrito, XXIII*(2), 41–60.Google Scholar - 14.Field, H. (1989).
*Realism, Mathematics and Modality*. Oxford: Blackwell.Google Scholar - 15.Fisette, D. (Ed.) (2003).
*Husserl’s Logical Investigations**Reconsidered*, Kluwer: Dordrecht.Google Scholar - 16.Frege, G.
*Begriffschrift*, 1879, reprint Georg Olms, Hildesheim 1964.Google Scholar - 17.Frege, G.
*Die Grundlagen der Arithmetik*, 1884, Centenarausgabe, Felix Meiner, Hamburg 1986.Google Scholar - 18.Frege, G.
*Grundgesetze der Arithmetik*I, 1893, II, 1903, reprint in one volume Georg Olms 1962.Google Scholar - 19.Gödel, K. Über formal unentscheidbare Sätze der
*Principia Mathematica*und verwandter Systeme I. 1931, reprint with a parallel English translation in Kurt Gödel,*Collected Works*I, 1986, pp. 144–195.Google Scholar - 20.Hill, C. O. Incomplete Symbols, Dependent Meanings and Paradox. In Daniel, O., Dahlstrom (Eds.), Husserl’s Logical Investigations. pp. 69–93.Google Scholar
- 21.Hill, C. O., & Rosado Haddock, G. E.
*Husserl or**Frege?: Meaning, objectivity and mathematics.*Open Court, Chicago & La Salle 2000, paperback edition 2003.Google Scholar - 22.Husserl, E.
*Über den Begriff der Zahl*, 1887, reprinted as Appendix A in Husserliana XII, 1970, pp. 289–339.Google Scholar - 23.Husserl, E.
*Philosophie der Arithmetik*, 1891, Husserliana XII, M. Nijhoff, The Hague 1970.Google Scholar - 24.Husserl, E. Besprechung von E. Schröder,
*‘Vorlesungen über die Algebra der Logik I*’, 1891, reprinted in*Aufsätze und Rezensionen*(1890–1910), Husserliana XXII, 1979, pp.3–43.Google Scholar - 25.Husserl, E.
*Logische Untersuchungen*, 1900–1901, Husserliana XVIII (1975) & XIX (1984), M.␣Nijhoff, The Hague.Google Scholar - 26.Husserl, E. (1974).
*Formale und transzendentale Logik*,*1929, Husserliana XVII*. The Hague: M. Nijhoff.Google Scholar - 27.Husserl, Ed. (1958).
*Die Idee der Phänomenologie*,*Husserliana II*. The Hague: M. Nijhoff.Google Scholar - 28.Husserl, E. (1979).
*Aufsätze und Rezensionen (1890–1910), Husserliana XXII*. The Hague: M.␣Nijhoff.Google Scholar - 29.Husserl, E. (1983).
*Studien zur Arithmetik und**Geometrie, Husserliana XXI*. The Hague: M.␣Nijhoff.Google Scholar - 30.Husserl, E. (1984).
*Einleitung in die Logik und**Erkenntnistheorie Husserliana XXIV*. Dordrecht: Kluwer.Google Scholar - 31.Husserl, E. (1996).
*Logik und allgemeine Wissenschaftstheorie, Husserliana XXX*. Dordrecht: Kluwer.Google Scholar - 32.Husserl, E. (1975).
*Introduction to the Logical**Investigations*. The Hague: M. Nijhoff.Google Scholar - 33.
- 34.Husserl, E. Manuskript A I 35 (α) 1912, (β) 1920 und später.Google Scholar
- 35.Kant, I.
*Kritik der reinen Vernunft*1781, 2nd edn. 1787, reprint of both versions, edited by R.␣Schmidt, Felix Meiner, Hamburg 1930, 3rd edn. 1990.Google Scholar - 36.Mac Lane, S. (1971).
*Categories for the Working Mathematician*. New York: Springer.Google Scholar - 37.Mac Lane, S. (1986).
*Mathematics: Form and Function*. New York: Springer.Google Scholar - 38.Majer, U. (1997). Husserl and Hilbert on completeness: A neglected chapter in early twenty century foundation of mathematics.
*Synthese, 110*, 37–56.CrossRefGoogle Scholar - 39.Mancosu, P., & Ryckman, T.A. (2002). Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl’.
*Philosophia Mathematica, 10*(2), 130–202.Google Scholar - 40.Riemann, B.
*Über die Hypothesen, welche der**Geometrie zugrunde liegen*, 1867, third edition, Berlin 1923, reprint, Chelsea, New York 1973.Google Scholar - 41.Rosado Haddock, G. E. (1973). Edmund Husserls Philosophie der Logik und Mathematik im Lichte der gegenwärtigen Logik und Grundlagenforschung, (Diss.), Bonn.Google Scholar
- 42.Rosado Haddock, G. E. (1987). Husserl’s Epistemology of Mathematics and the Foundation of Platonism in Mathematics.
*Husserl Studies*4, No. 2, reprint in Claire, O. Hill & Guillermo E. Rosado Haddock,*Husserl or Frege?: Meaning, Objectivity and Mathematics.*pp. 221–239.Google Scholar - 43.Rosado Haddock, G. E. (1997). Husserl’s relevance for the philosophy and foundations of mathematics.
*Axiomathes, VIII*(1–3), 125–142.Google Scholar - 44.Rosado Haddock, G. E. (2000). The structure of the prolegomena.
*Manuscrito, XXIII*(2), 61–99.Google Scholar - 45.Rosado Haddock, G. E. Review of Edmund Husserl,
*Alte und neue Logik: Vorlesungen 1908/09*. forthcoming in*Husserl Studies*.Google Scholar - 46.Schmit, R. (1981).
*Husserls Philosophie der Mathematik*, Bouvier, Bonn.Google Scholar - 47.Scholz, E. (1980). Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré, Boston.Google Scholar
- 48.Schuhmann, E., & Scuhmann, K. (2001) Husserl’s Manuskripte zu seinem Göttinger Doppelvortrag von 1901.
*Husserl Studies, 7*, 87–123.CrossRefGoogle Scholar - 49.Schuhmann, K. (1977).
*Husserl-Chronik*. The Hague: M. Nijhoff.Google Scholar - 50.Tarski, A. Der Wahrheitsbegriff in den formalisierten Sprachen 1935 (expanded version of the Polish original 1933), English translation in Alfred Tarski,
*Logic, Semantics*,*Metamathematics*1956, second edition, Hackett, Indiana 1983, pp. 152–278.Google Scholar - 51.Tieszen, R. (1989).
*Mathematical Intuition*. Dordrecht: Kluwer.Google Scholar - 52.Torretti, R. (1978). Philosophy of Geometry from Riemann to Poincaré, Reidel, Dordrecht.Google Scholar
- 53.Weyl, H.
*Das Kontinuum*, 1918, reprint New York, Chelsea 1960, 1973.Google Scholar

## Copyright information

© Springer Science+Business Media, Inc. 2006