Skip to main content
Log in

SGLT2 inhibitors: a focus on cardiac benefits and potential mechanisms

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

This paper highlights the cardioprotective potential of sodium-glucose cotransporter 2 inhibitors (SLGT2i), as well as several most discussed mechanisms responsible for their cardioprotection. Cardiovascular diseases are considered a primary cause of death in nearly 80% of type 2 diabetes mellitus (T2DM) patients, with a 2–4-fold greater incidence of heart failure (HF) among diabetics. As novel hypoglycemics, SGLT2i showed exceptional cardiovascular benefits, reflected through robust reductions of cardiovascular mortality and hospitalization for HF in T2DM patients. Recently, those effects have been reported even in patients with HF and reduced ejection fraction irrespectively of diabetic status, suggesting that cardioprotective effects of SGLT2i are driven independently of their hypoglycemic actions. SGLT2i exerted hemodynamic and metabolic effects, partially driven by natriuresis and osmotic diuresis. However, those systemic effects are modest, and therefore cannot be completely related to the cardiac benefits of these agents in T2DM patients. Hence, increased circulating ketone levels during SGLT2i administration have brought out another hypothesis of a cardiac metabolic switch. Moreover, SGLT2i influence ion homeostasis and exert anti-inflammatory and antifibrotic effects. Their enviable influence on oxidative stress markers, as well as anti- and pro-apoptotic factors, have also been reported. However, since the main mechanistical contributor of their cardioprotection has not been elucidated yet, a joint action of systemic and molecular mechanisms has been suggested. In the light of ongoing trials evaluating the effects of SGLT2i in patients with HF and preserved ejection fraction, a new chapter of beneficial SGLT2i mechanisms is expected, which might resolve their main underlying action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  2. McAloon CJ, Osman F, Glennon P, Lim PB, Hayat SA (2016) Global epidemiology and incidence of cardiovascular disease. In: Papageorgiou N (ed) Cardiovascular disease—genetic susceptibility, enviromental factors and their interaction. Elsevier, Academic Press, The Netherlands, pp 57–96

    Google Scholar 

  3. Katsiki N, Banach M, Mikhailidis DP (2019) Is type 2 diabetes mellitus a coronary heart disease equivalent or not? do not just enjoy the debate and forget the patient! Arch Med Sci 15:1357–1364. https://doi.org/10.5114/aoms.2019.89449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henning RJ (2018) Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol 14:491–509. https://doi.org/10.2217/fca-2018-0045

    Article  CAS  PubMed  Google Scholar 

  5. Dunlay SM, Givertz MM, Aguilar D et al (2019) Type 2 diabetes mellitus and heart failure: a scientific statement from the American Heart Association and the Heart Failure Society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 140:e294–e324. https://doi.org/10.1161/CIR.0000000000000691

    Article  CAS  PubMed  Google Scholar 

  6. Echouffo-Tcheugui JB, Xu H, DeVore AD et al (2016) Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: findings from get with the guidelines-heart failure registry. Am Heart J 182:9–20. https://doi.org/10.1016/j.ahj.2016.07.025

    Article  PubMed  Google Scholar 

  7. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  8. Rydén L, Grant PJ, Anker SD et al (2013) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 34:3035–3087. https://doi.org/10.1093/eurheartj/eht108

    Article  PubMed  Google Scholar 

  9. Bergmark BA, Bhatt DL, McGuire DK et al (2019) Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction: observations from the SAVOR-TIMI 53 trial. Circulation 140:1004–1014. https://doi.org/10.1161/CIRCULATIONAHA.119.040144

    Article  CAS  PubMed  Google Scholar 

  10. Douros A, Yin H, Yu OHY, Filion KB, Azoulay L, Suissa S (2017) Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events. Diabetes Care 40:1506–1513. https://doi.org/10.2337/dc17-0595

    Article  CAS  PubMed  Google Scholar 

  11. Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N (2019) SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health 16:2965. https://doi.org/10.3390/ijerph16162965

    Article  CAS  PubMed Central  Google Scholar 

  12. Ferrannini E, Solini A (2012) SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8:495–502. https://doi.org/10.1038/nrendo.2011.243

    Article  CAS  PubMed  Google Scholar 

  13. Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK (2015) Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 38:316–322. https://doi.org/10.2337/dc14-0920

    Article  PubMed  Google Scholar 

  14. Inzucchi SE, Docherty K, Kober L et al (2020) 271-OR: ADA Presidents’ select abstract: effect of dapagliflozin on the incidence of diabetes: a prespecified exploratory analysis from DAPA-HF. Diabetes 69:271-OR. https://doi.org/10.2337/db20-271-OR

  15. Diamond GA, Bax L, Kaul S et al (2007) Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death. Ann Intern Med 147:578–581. https://doi.org/10.7326/0003-4819-147-8-200710160-00182

    Article  PubMed  Google Scholar 

  16. Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardio. https://doi.org/10.1038/s41569-020-0406-8

    Article  Google Scholar 

  17. Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136–142. https://doi.org/10.1111/j.1464-5491.2009.02894.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215–225. https://doi.org/10.1007/s00125-016-4157-3

    Article  CAS  PubMed  Google Scholar 

  19. Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int Suppl 120:S1–S6. https://doi.org/10.1038/ki.2010.509

    Article  CAS  Google Scholar 

  20. Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404. https://doi.org/10.1172/JCI116972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosley JF 2nd, Smith L, Everton E, Fellner C (2015) Sodium-glucose linked transporter 2 (SGLT2) inhibitors in the management of type-2 diabetes: a drug class overview. P T 40:451–462

    PubMed  PubMed Central  Google Scholar 

  22. DeFronzo RA, Norton L, Abdul-Ghani M et al (2017) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 13:11–26. https://doi.org/10.1038/nrneph.2016.170

    Article  CAS  PubMed  Google Scholar 

  23. Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38. https://doi.org/10.1002/dmrr.532

    Article  CAS  PubMed  Google Scholar 

  24. Blaschek W (2017) Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors. Planta Med 83:985–993. https://doi.org/10.1055/s-0043-106050

    Article  CAS  PubMed  Google Scholar 

  25. Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086. https://doi.org/10.1007/s00125-018-4654-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cinti F, Moffa S, Impronta F, Cefalo CMA, Sun VA, Sorice GP, Mezza T, Giaccari A (2017) Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther 11:2905–2919. https://doi.org/10.2147/DDDT.S114932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  28. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  29. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  30. American Diabetes Association (2020) Standards of medical care in diabetes-2020 abridged for primary care providers. Clin Diabetes 38:10–38. https://doi.org/10.2337/cd20-as01

    Article  PubMed Central  Google Scholar 

  31. Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  32. Kosiborod M, Cavender MA, Fu AZ et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259. https://doi.org/10.1161/CIRCULATIONAHA.117.029190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kosiborod M, Lam CSP, Kohsaka S et al (2018) Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol 71:2628–2639. https://doi.org/10.1016/j.jacc.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  34. Patorno E, Pawar A, Franklin JM et al (2019) Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation 139:2822–2830. https://doi.org/10.1161/CIRCULATIONAHA.118.039177

    Article  CAS  PubMed  Google Scholar 

  35. Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 37:1526–1534. https://doi.org/10.1093/eurheartj/ehv728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fitchett D, Inzucchi SE, Cannon CP et al (2019) Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial. Circulation 139:1384–1395. https://doi.org/10.1161/CIRCULATIONAHA.118.037778

    Article  CAS  PubMed  Google Scholar 

  37. Figtree GA, Rådholm K, Barrett TD et al (2019) Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus. Circulation 139:2591–2593. https://doi.org/10.1161/CIRCULATIONAHA.119.040057

    Article  PubMed  Google Scholar 

  38. Kato ET, Silverman MG, Mosenzon O et al (2019) Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139:2528–2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130

    Article  CAS  PubMed  Google Scholar 

  39. McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  40. U.S. Food and Drug Administration (2020) FDA approves new treatment for a type of heart failure. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure. Accessed 05 May 2020

  41. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. https://doi.org/10.1056/NEJMoa2022190

    Article  PubMed  Google Scholar 

  42. Ilieșiu AM, Hodorogea AS (2018) Treatment of heart failure with preserved ejection fraction. Adv Exp Med Biol 1067:67–87. https://doi.org/10.1007/5584_2018_149

    Article  PubMed  Google Scholar 

  43. Packer M (2019) Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion. Cardiovasc Diabetol 18:129. https://doi.org/10.1186/s12933-019-0938-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cannon CP (2007) Cardiovascular disease and modifiable cardiometabolic risk factors 8(3):11–28. https://doi.org/10.1016/s1098-3597(07)80025-1

    Article  Google Scholar 

  45. Shaikh A (2017) A practical approach to hypertension management in diabetes. Diabetes Ther 8:981–989. https://doi.org/10.1007/s13300-017-0310-3

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tikkanen I, Chilton R, Johansen OE et al (2016) Potential role of sodium glucose cotransporter 2 inhibitors in the treatment of hypertension. Curr Opin Nephrol Hypertens 25:81–86. https://doi.org/10.1097/MNH.0000000000000199

    Article  CAS  PubMed  Google Scholar 

  47. Chen HY, Huang JY, Siao WZ, Jong GP (2020) The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol 19:73. https://doi.org/10.1186/s12933-020-01048-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maliha G, Townsend RR (2015) SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens 9:48–53. https://doi.org/10.1016/j.jash.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  49. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ (2016) Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab 18:783–794. https://doi.org/10.1111/dom.12670

    Article  CAS  PubMed  Google Scholar 

  50. Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031. https://doi.org/10.1210/jc.2011-2260

    Article  CAS  PubMed  Google Scholar 

  51. Schork A, Saynisch J, Vosseler A et al (2019) Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol 18:46. https://doi.org/10.1186/s12933-019-0852-y

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cefalu WT, Stenlöf K, Leiter LA et al (2015) Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia 58:1183–1187. https://doi.org/10.1007/s00125-015-3547-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193. https://doi.org/10.1111/dom.12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O’Donnell M, Mente A, Yusuf S (2015) Sodium intake and cardiovascular health. Circ Res 116:1046–1057. https://doi.org/10.1161/CIRCRESAHA.116.303771

    Article  CAS  PubMed  Google Scholar 

  55. Schneider MP, Raff U, Kopp C et al (2017) Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 28:1867–1876. https://doi.org/10.1681/ASN.2016060662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karg MV, Bosch A, Kannenkeril D et al (2018) SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol 17:5. https://doi.org/10.1186/s12933-017-0654-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI (2017) Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136:1643–1658. https://doi.org/10.1161/CIRCULATIONAHA.117.030012

    Article  CAS  PubMed  Google Scholar 

  58. Lopaschuk GD, Verma S (2020) Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 5:632–644. https://doi.org/10.1016/j.jacbts.2020.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pellicori P, Kaur K, Clark AL (2015) Fluid management in patients with chronic heart failure. Card Fail Rev 1:90–95. https://doi.org/10.15420/cfr.2015.1.2.90

  60. Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC (2020) A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J ehaa419. https://doi.org/10.1093/eurheartj/ehaa419

  61. Verma S, Mazer CD, Yan AT et al (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 140:1693–1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375

    Article  PubMed  Google Scholar 

  62. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339. https://doi.org/10.1007/s00125-016-3956-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862. https://doi.org/10.1111/dom.12127

    Article  CAS  PubMed  Google Scholar 

  64. Mazer CD, Hare GMT, Connelly PW et al (2020) Effect of empagliflozin on Erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 141:704–707. https://doi.org/10.1161/CIRCULATIONAHA.119.044235

    Article  PubMed  Google Scholar 

  65. Takashima H, Yoshida Y, Nagura C, Furukawa T, Tei R, Maruyama T, Maruyama N, Abe M (2018) Renoprotective effects of canagliflozin, a sodium glucose cotransporter 2 inhibitor, in type 2 diabetes patients with chronic kidney disease: a randomized open-label prospective trial. Diab Vasc Dis Res 15:469–472. https://doi.org/10.1177/1479164118782872

    Article  CAS  PubMed  Google Scholar 

  66. Maruyama T, Takashima H, Oguma H et al (2019) Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther 21:713–720. https://doi.org/10.1089/dia.2019.0212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inzucchi SE, Zinman B, Fitchett D et al (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363. https://doi.org/10.2337/dc17-1096

    Article  CAS  PubMed  Google Scholar 

  68. Secrest MH, Udell JA, Filion KB (2017) The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors. Trends Cardiovasc Med 27:194–202. https://doi.org/10.1016/j.tcm.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  69. Scheen AJ, Paquot N (2014) Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence. Diabetes Metab 40(6 Suppl 1):S4–S11. https://doi.org/10.1016/S1262-3636(14)72689-8

    Article  CAS  PubMed  Google Scholar 

  70. Merovci A, Solis-Herrera C, Daniele G et al (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 124(2):509–514. https://doi.org/10.1172/JCI70704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124(2):499–508. https://doi.org/10.1172/JCI72227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saponaro C, Pattou F, Bonner C et al (2018) SGLT2 inhibition and glucagon secretion in humans. Diabetes Metab 44(5):383–385. https://doi.org/10.1016/j.diabet.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  73. Pereira MJ, Eriksson JW (2019) Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs 79(3):219–230. https://doi.org/10.1007/s40265-019-1057-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee PC, Ganguly S, Goh SY et al (2018) Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev 19(12):1630–1641. https://doi.org/10.1111/obr.12755

    Article  CAS  PubMed  Google Scholar 

  75. Bays HE, Weinstein R, Law G, Canovatchel W (2014) Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring) 22(4):1042–1049. https://doi.org/10.1002/oby.20663

    Article  CAS  Google Scholar 

  76. Scheen AJ (2019) Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications. Diabetes Metab 45(3):213–223. https://doi.org/10.1016/j.diabet.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  77. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW (2016) Non-alcoholic fatty liver disease and diabetes. Metabolism 65(8):1096–1108. https://doi.org/10.1016/j.metabol.2016.01.001

  78. Targher G, Byrne CD, Tilg H et al (2020) NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 69:1691–1705. https://doi.org/10.1136/gutjnl-2020-320622

    Article  CAS  PubMed  Google Scholar 

  79. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  80. Bhole V, Choi JW, Kim SW, de Vera M, Choi H (2010) Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med 123(10):957–961. https://doi.org/10.1016/j.amjmed.2010.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, Chen L (2018) Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: ameta-analysis of randomized controlled trials. Diabetes Obes Metab 20(2):458–462. https://doi.org/10.1111/dom.13101

    Article  CAS  PubMed  Google Scholar 

  82. Krishnan E (2009) Hyperuricemia and incident heart failure. Circ Heart Fail 2(6):556–562. https://doi.org/10.1161/CIRCHEARTFAILURE.108.797662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gu J, Fan YQ, Zhang HL, Zhang JF, Wang CQ (2018) Serum uric acid is associated with incidence of heart failure with preserved ejection fraction and cardiovascular events in patients with arterial hypertension. J Clin Hypertens (Greenwich) 20(3):560–567. https://doi.org/10.1111/jch.13210

    Article  CAS  Google Scholar 

  84. Saydah SH, Fradkin J, Cowie CC (2004) Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 291(3):335–342. https://doi.org/10.1001/jama.291.3.335

    Article  CAS  PubMed  Google Scholar 

  85. Hayashi T, Fukui T, Nakanishi N et al (2017) Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin [published correction appears in Cardiovasc Diabetol. et al 2017 Nov 13;16(1):149] Cardiovasc Diabetol 16 1 8 https://doi.org/10.1186/s12933-016-0491-5

  86. Storgaard H, Gluud LL, Bennett C, Grøndahl MF, Christensen MB, Knop FK, Vilsbøll T (2016) Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One 11(11):e0166125. https://doi.org/10.1371/journal.pone.0166125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Filippas-Ntekouan S, Tsimihodimos V, Filippatos T, Dimitriou T, Elisaf M (2018) SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids. Expert Opin Drug Metab Toxicol 14(11):1113–1121. https://doi.org/10.1080/17425255.2018.1541348

    Article  CAS  PubMed  Google Scholar 

  88. AMERICAN DIABETES ASSOCIATION (2003) Management of dyslipidemia in adults with diabetes. Diabetes Care 26(suppl 1):s83–s86. https://doi.org/10.2337/diacare.26.2007.S83

    Article  Google Scholar 

  89. Aubert G, Martin OJ, Horton JL et al (2016) The failing heart relies on ketone bodies as a fuel. Circulation 133:698–705. https://doi.org/10.1161/CIRCULATIONAHA.115.017355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Staels B (2017) Cardiovascular protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. Am J Med 130:S30–S39. https://doi.org/10.1016/j.amjmed.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  91. Nagoshi T, Yoshimura M, Rosano GM, Lopaschuk GD, Mochizuki S (2011) Optimization of cardiac metabolism in heart failure. Curr Pharm Des 17:3846–3853. https://doi.org/10.2174/138161211798357773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maejima Y (2020) SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med 6:186. https://doi.org/10.3389/fcvm.2019.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al Jobori H, Daniele G, Adams J, Cersosimo E, Triplitt C, DeFronzo RA, Abdul-Ghani M (2017) Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab 19:809–813. https://doi.org/10.1111/dom.12881

    Article  CAS  PubMed  Google Scholar 

  94. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R et al (2019) Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol 73:1931–1944. https://doi.org/10.1016/j.jacc.2019.01.056

    Article  CAS  PubMed  Google Scholar 

  95. Oh CM, Cho S, Jang JY et al (2019) Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure. Korean Circ J 49:1183–1195. https://doi.org/10.4070/kcj.2019.0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ferrannini E, Mark M, Mayoux E (2016) CV Protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114. https://doi.org/10.2337/dc16-0330

    Article  PubMed  Google Scholar 

  97. Wakabayashi S, Hisamitsu T, Nakamura TY et al (2013) Regulation of the cardiac Na+/H+ exchanger in health and disease. J Mol Cell Cardiol 61:68–76. https://doi.org/10.1016/j.yjmcc.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  98. Fenton RA, Poulsen SB, de la Mora CS, Soleimani M, Dominguez Rieg JA, Rieg T (2017) Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 92:397–414. https://doi.org/10.1016/j.kint.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Packer M (2017) Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation 136:1548–1559. https://doi.org/10.1161/CIRCULATIONAHA.117.030418

    Article  CAS  PubMed  Google Scholar 

  100. Pessoa TD, Campos LC, Carraro-Lacroix L, Girardi AC, Malnic G (2014) Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol 25:2028–2039. https://doi.org/10.1681/ASN.2013060588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Di Franco A, Cantini G, Tani A et al (2017) Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int J Cardiol 243:86–90. https://doi.org/10.1016/j.ijcard.2017.05.032

    Article  PubMed  Google Scholar 

  102. Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x

    Article  CAS  PubMed  Google Scholar 

  103. Iborra-Egea O, Santiago-Vacas E, Yurista SR et al (2019) Unraveling the molecular mechanism of action of Empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl Sci 4:831–840. https://doi.org/10.1016/j.jacbts.2019.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  104. Uthman L, Baartscheer A, Bleijlevens B et al (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61:722–726. https://doi.org/10.1007/s00125-017-4509-7

    Article  CAS  PubMed  Google Scholar 

  105. Hammoudi N, Jeong D, Singh R et al (2017) Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther 31:233–246. https://doi.org/10.1007/s10557-017-6734-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joubert M, Jagu B, Montaigne D et al (2017) The sodium-glucose cotransporter 2 inhibitor Dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes 66:1030–1040. https://doi.org/10.2337/db16-0733

    Article  CAS  PubMed  Google Scholar 

  107. Suarez J, Scott B, Dillmann WH (2008) Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 295:R1439–R1445. https://doi.org/10.1152/ajpregu.00736.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Trum M, Wagner S, Maier LS, Mustroph J (2020) CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochim Biophys Acta Mol Basis Dis 1866:165729. https://doi.org/10.1016/j.bbadis.2020.165729

    Article  CAS  PubMed  Google Scholar 

  109. Schulman H, Anderson ME (2010) Ca/Calmodulin-dependent protein kinase II in heart failure. Drug Discov Today Dis Mech 7(2):e117–e122. https://doi.org/10.1016/j.ddmec.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322. https://doi.org/10.1161/01.RES.0000194329.41863.89

    Article  CAS  PubMed  Google Scholar 

  111. Mustroph J, Wagemann O, Lücht CM, Trum M, Hammer KP, Martin C et al (2018) Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Hear Fail 5:642–648. https://doi.org/10.1002/ehf2.12336

    Article  Google Scholar 

  112. Suthahar N, Meijers WC, Silljé HHW, de Boer RA (2017) From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep 14:235–250. https://doi.org/10.1007/s11897-017-0343-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bonnet F, Scheen AJ (2018) Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab 44:457–464. https://doi.org/10.1016/j.diabet.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  114. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed Central  Google Scholar 

  115. Butts B, Gary RA, Dunbar SB, Butler J (2015) The importance of NLRP3 inflammasome in heart failure. J Card Fail 21:586–593. https://doi.org/10.1016/j.cardfail.2015.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim SR, Lee SG, Kim SH et al (2020) SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 11:2127. https://doi.org/10.1038/s41467-020-15983-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y (2017) SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with Saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther 31:119–132. https://doi.org/10.1007/s10557-017-6725-2

    Article  CAS  PubMed  Google Scholar 

  118. Byrne NJ, Matsumura N, Maayah ZH et al (2020) Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail 13:e006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277

    Article  CAS  PubMed  Google Scholar 

  119. Kusaka H, Koibuchi N, Hasegawa Y, Ogawa H, Kim-Mitsuyama S (2016) Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc Diabetol 15:157. https://doi.org/10.1186/s12933-016-0473-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin B, Koibuchi N, Hasegawa Y et al (2014) Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol 13:148. https://doi.org/10.1186/s12933-014-0148-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shi X, Verma S, Yun J et al (2017) Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem 433:97–102. https://doi.org/10.1007/s11010-017-3018-9

    Article  CAS  PubMed  Google Scholar 

  122. Arow M, Waldman M, Yadin D et al (2020) Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol 19:7. https://doi.org/10.1186/s12933-019-0980-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee TM, Chang NC, Lin SZ (2017) Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 104:298–310. https://doi.org/10.1016/j.freeradbiomed.2017.01.035

    Article  CAS  PubMed  Google Scholar 

  124. Lim CT, Kola B, Korbonits M (2010) AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44:87–97. https://doi.org/10.1677/JME-09-0063

    Article  CAS  PubMed  Google Scholar 

  125. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253. https://doi.org/10.2147/DMSO.S43731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232. https://doi.org/10.1074/jbc.M202489200

    Article  CAS  PubMed  Google Scholar 

  127. Hawley SA, Ford RJ, Smith BK et al (2016) The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65:2784–2794. https://doi.org/10.2337/db16-0058

    Article  CAS  PubMed  Google Scholar 

  128. Mancini SJ, Boyd D, Katwan OJ et al (2018) Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep 8:5276. https://doi.org/10.1038/s41598-018-23420-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346. https://doi.org/10.1016/j.redox.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  130. Lu Q, Liu J, Li X et al (2020) Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol 501:110642. https://doi.org/10.1016/j.mce.2019.110642

    Article  CAS  PubMed  Google Scholar 

  131. Li C, Zhang J, Xue M et al (2019) SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 18:15. https://doi.org/10.1186/s12933-019-0816-2

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264. https://doi.org/10.1155/2014/761264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 24:547–553. https://doi.org/10.1016/j.jsps.2015.03.013

    Article  PubMed  Google Scholar 

  134. van der Pol A, van Gilst WH, Voors AA, van der Meer P (2019) Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21:425–435. https://doi.org/10.1002/ejhf.1320

    Article  PubMed  Google Scholar 

  135. Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ (2018) Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 104:293–299. https://doi.org/10.1136/heartjnl-2017-311448

    Article  CAS  PubMed  Google Scholar 

  136. Zhao QD, Viswanadhapalli S, Williams P et al (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 131:643–655. https://doi.org/10.1161/CIRCULATIONAHA.114.011079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu XY, Luo AY, Zhou YR, Ren JH (2014) N-acetylcysteine reduces oxidative stress, nuclear factor κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep 10:615–624. https://doi.org/10.3892/mmr.2014.2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Uthman L, Baartscheer A, Schumacher CA et al (2018) Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol 9:1575. https://doi.org/10.3389/fphys.2018.01575

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB (2018) Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin Transl Immunology 7:e1016. https://doi.org/10.1002/cti2.1016

    Article  PubMed  PubMed Central  Google Scholar 

  140. Terami N, Ogawa D, Tachibana H et al (2014) Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 9:e100777. https://doi.org/10.1371/journal.pone.0100777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sayour AA, Korkmaz-Icöz S, Loganathan S et al (2019) Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med 17:127. https://doi.org/10.1186/s12967-019-1881-8

    Article  PubMed  PubMed Central  Google Scholar 

  142. Steven S, Frenis K, Oelze M et al (2019) Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev 2019:7092151. https://doi.org/10.1155/2019/7092151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kay AM, Simpson CL, Stewart JA Jr et al (2016) The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res 2016:6809703. https://doi.org/10.1155/2016/6809703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Oelze M, Kröller-Schön S, Welschof P et al (2014) The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 9:e112394. https://doi.org/10.1371/journal.pone.0112394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tanajak P, Sa-Nguanmoo P, Sivasinprasasn S, Thummasorn S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N (2018) Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol 236:69–84. https://doi.org/10.1530/JOE-17-0457

    Article  CAS  PubMed  Google Scholar 

  146. Zhou Y, Wu W (2017) The sodium-glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem 41:2503–2512. https://doi.org/10.1159/000475942

    Article  CAS  PubMed  Google Scholar 

  147. Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F (2009) SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 84:111–118. https://doi.org/10.1093/cvr/cvp190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS (2019) SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgrad Med 131:82–88. https://doi.org/10.1080/00325481.2019.1581971

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Faculty of Medical Sciences, University of Kragujevac (Junior project No. 03/18 and No. 03/20).

Author information

Authors and Affiliations

Authors

Contributions

Maja Nikolic—collecting literature data, writing a manuscript and table design; Vladimir Zivkovic—text supervising and research the literature; Jovana Joksimovic Jovic—text supervising and editing; Jasmina Sretenovic—text supervising and editing; Goran Davidovic—design of the topic; Stefan Simovic—text supervising and editing; Danijela Djokovic—text supervising and final approval; Nemanja Muric—text supervising; Sergey Bolevich—text supervising and final approval; Vladimir Jakovljevic—text supervising and final approval.

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolic, M., Zivkovic, V., Jovic, J.J. et al. SGLT2 inhibitors: a focus on cardiac benefits and potential mechanisms. Heart Fail Rev 27, 935–949 (2022). https://doi.org/10.1007/s10741-021-10079-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10079-9

Keywords

Navigation