Skip to main content
Log in

Cardiac xenotransplantation: a promising way to treat advanced heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

A Correction to this article was published on 15 June 2021

This article has been updated

Abstract

Cardiac xenotransplantation (CXTx) might be a promising approach to bridge the gap between the supply and demand of a donor heart. The survival of cardiac xenograft has been significantly extended in pig-to-nonhuman primate (NHP) CXTx, with records of 195 days and 945 days for orthotropic and heterotopic CXTx, respectively. To present the history of CXTx, we list the reported clinical CXTx, compare pigs and NHPs as sources of hearts, and compare three different kinds of preclinical CXTx models. The application of genetically modified pigs and novel immunosuppressive drugs accelerates the development of CXTx, and we summarize the reported pig-to-NHP CXTx with detailed information. Besides, we discuss the underlining mechanisms and potential preventive strategies of immunological barriers, including hyperacute rejection, acute humoral xenograft rejection, acute cellular xenograft rejection, chronic rejection, coagulation dysfunction, and systemic inflammation. Though intense cellular infiltration in cardiac xenograft has only been documented in a small number of studies, we especially stress the importance of cellular rejection in CXTx, because we believe it is often masked by the rapid and strong humoral response and it may eventually become a more important and common type of xenograft rejection. In addition, we conclude other obstacles as well as possible solutions in CXTx, such as perioperative cardiac xenograft dysfunction, detrimental xenograft overgrowth, and porcine endogenous retroviruses. Finally, we briefly introduce several other approaches that have been proposed to deal with the organ heart shortage crisis, and we firmly believe that CXTx provides the best near-term solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Abbreviations

aCD154mAb:

Anti-CD154 monoclonal antibody

aCD20mAb:

Anti-CD20 monoclonal antibody

aCD40mAb:

Anti-CD40 monoclonal antibody

apC:

Activated protein C

ACXR:

Acute cellular xenograft rejection

ADCC:

Antibody-dependent cytotoxicity

AHXR:

Acute humoral xenograft rejection

APC:

Antigen-presenting cell

AT:

Antithrombin

β4GALNT2:

β-1,4-N-Acetyl-galactosa-minyl transferase 2

CC:

Consumptive coagulation

CCS:

Cyclophosphamide, cyclosporine A, and steroids/corticosteroids

CMAH:

Cytidine monophosphate-N-acetylneuraminic acid hydroxylase

CR1:

Complement receptor type 1

C-RP:

C-reactive protein

CVF:

Cobra venom factor

CXTx:

Cardiac xenotransplantation

DXR:

Delayed xenograft rejection

FcR:

Fc receptor

FDA:

Food and Drug Administration

GP1b:

Glycoprotein 1b

GT:

Galactosyltransferase

hCRP:

Human complement regulatory proteins

hEPCR:

Human endothelial protein C-receptor

hTBM:

Human thrombomodulin

hTFPI:

Human tissue factor pathway inhibitor

HAR:

Hyperacute rejection

HLA-I:

Human leukocyte antigen class I

Ig:

Immune globulin

IL:

Interleukin

I/R:

Ischemic/reperfusion

ISHLT:

International Society for Heart and Lung Transplantation

MAC:

Membrane attack complex

MHC-I:

Major histocompatibility antigens class I

MMF:

Mycophenolate mofetil

NHP:

Nonhuman primate

NK:

Natural killer

pC:

Protein C

PCXD:

Perioperative cardiac xenograft dysfunction

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

pEC:

Porcine endothelial cell

PERVs:

Porcine endogenous retrovirus

SIRP-α:

Signal regulatory protein α

SLA-I:

Swine leukocyte antigen class I

SIXR:

Systemic inflammation in xenograft recipients

TCRs:

T cell receptors

TF:

Tissue factor

TGF-β:

Transforming growth factor β

TMA:

Thrombotic microangiopathy

TNF-α:

Tumor necrosis factor-α

vWF:

von Willebrand Factor

References

  1. Tanai E, Frantz S (2015) Pathophysiology of heart failure. Comprehensive Physiology 6(1):187–214. https://doi.org/10.1002/cphy.c140055

    Article  PubMed  Google Scholar 

  2. Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK (2018) Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation 137(1):71–87. https://doi.org/10.1161/circulationaha.117.029753

    Article  PubMed  Google Scholar 

  3. Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically engineered pigs in xenotransplantation research. J Pathol 238(2):288–299. https://doi.org/10.1002/path.4635

    Article  PubMed  Google Scholar 

  4. Wang Y, Lei T, Wei L, Du S, Girani L, Deng S (2019) Xenotransplantation in China: present status. Xenotransplantation 26(1):e12490. https://doi.org/10.1111/xen.12490

    Article  PubMed  Google Scholar 

  5. Smith M, Dominguez-Gil B, Greer DM, Manara AR, Souter MJ (2019) Organ donation after circulatory death: current status and future potential. Intensive Care Med 45(3):310–321. https://doi.org/10.1007/s00134-019-05533-0

    Article  PubMed  Google Scholar 

  6. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536. https://doi.org/10.1016/j.biomaterials.2019.119536

    Article  CAS  Google Scholar 

  7. Girani L, Xie X, Lei T, Wei L, Wang Y, Deng S (2019) Xenotransplantation in Asia Xenotransplantation 26 (1):e12493. doi:https://doi.org/10.1111/xen.12493

  8. Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, Rothblatt M, Boyden ES, Eidbo E, Lee WPA, Pomahac B, Brandacher G, Weinstock DM, Elliott G, Nelson D, Acker JP, Uygun K, Schmalz B, Weegman BP, Tocchio A, Fahy GM, Storey KB, Rubinsky B, Bischof J, Elliott JAW, Woodruff TK, Morris GJ, Demirci U, Brockbank KGM, Woods EJ, Ben RN, Baust JG, Gao D, Fuller B, Rabin Y, Kravitz DC, Taylor MJ, Toner M (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35(6):530–542. https://doi.org/10.1038/nbt.3889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjöberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schönmann U, Kaup F-J, Hagl C, Wolf E, Klymiuk N, Brenner P, Abicht J-M (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564(7736):430–433. https://doi.org/10.1038/s41586-018-0765-z

    Article  PubMed  CAS  Google Scholar 

  10. Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson Iii RN, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature communications 7:11138. https://doi.org/10.1038/ncomms11138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lower RR, Shumway NE (1960) Studies on orthotopic homotransplantation of the canine heart. Surg Forum 11:18–19

    PubMed  CAS  Google Scholar 

  12. Hardy JD, Chavez CM (1969) The first heart transplant in man: historical reexamination of the 1964 case in the light of current clinical experience. Transplant Proc 1(2):717–725

    PubMed  CAS  Google Scholar 

  13. Adams DH, Chen RH, Kadner A (2000) Cardiac xenotransplantation: clinical experience and future direction. Ann Thorac Surg 70(1):320–326. https://doi.org/10.1016/s0003-4975(00)01281-9

    Article  PubMed  CAS  Google Scholar 

  14. Murthy R, Bajona P, Bhama JK, Cooper DK (2016) Heart xenotransplantation: historical background, experimental progress, and clinical prospects. Ann Thorac Surg 101(4):1605–1613. https://doi.org/10.1016/j.athoracsur.2015.10.017

    Article  PubMed  Google Scholar 

  15. Cooley DA, Hallman GL, Bloodwell RD, Nora JJ, Leachman RD (1968) Human heart transplantation. Experience with twelve cases. Am J Cardiol 22(6):804–810. https://doi.org/10.1016/0002-9149(68)90175-6

    Article  PubMed  CAS  Google Scholar 

  16. Barnard CN, Wolpowitz A, Losman JG (1977) Heterotopic cardiac transplantation with a xenograft for assistance of the left heart in cardiogenic shock after cardiopulmonary bypass. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde 52(26):1035–1038

    PubMed  CAS  Google Scholar 

  17. Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB (1985) Baboon-to-human cardiac xenotransplantation in a neonate. Jama 254(23):3321–3329

    Article  CAS  Google Scholar 

  18. Czaplicki J, Blonska B, Religa Z (1992) The lack of hyperacute xenogeneic heart transplant rejection in a human. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 11(2 Pt 1):393–397

    CAS  Google Scholar 

  19. Appel JZ 3rd, Buhler L, Cooper DK (2001) The pig as a source of cardiac xenografts. J Card Surg 16(5):345–356. https://doi.org/10.1111/j.1540-8191.2001.tb00534.x

    Article  PubMed  Google Scholar 

  20. Niemann H, Rath D (2001) Progress in reproductive biotechnology in swine. Theriogenology 56(8):1291–1304. https://doi.org/10.1016/s0093-691x(01)00630-6

    Article  PubMed  CAS  Google Scholar 

  21. Sykes M, Sachs DH (2019) Transplanting organs from pigs to humans. 4 (41):eaau6298. doi:https://doi.org/10.1126/sciimmunol.aau6298%J Science Immunology

  22. Allan JS (1998) The risk of using baboons as transplant donors. Exogenous and endogenous viruses. Annals of the New York Academy of Sciences 862:87–99. https://doi.org/10.1111/j.1749-6632.1998.tb09120.x

    Article  PubMed  CAS  Google Scholar 

  23. Butler D (1999) FDA warns on primate xenotransplants. Nature 398(6728):549. https://doi.org/10.1038/19144

    Article  PubMed  CAS  Google Scholar 

  24. Postrach J, Bauer A, Schmoeckel M, Reichart B, Brenner P (2012) Heart xenotransplantation in primate models. Methods in molecular biology (Clifton, NJ) 885:155–168. https://doi.org/10.1007/978-1-61779-845-0_10

    Article  CAS  Google Scholar 

  25. Bauer A, Postrach J, Thormann M, Blanck S, Faber C, Wintersperger B, Michel S, Abicht JM, Christ F, Schmitz C, Schmoeckel M, Reichart B, Brenner P (2010) First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation 17(3):243–249. https://doi.org/10.1111/j.1399-3089.2010.00587.x

    Article  PubMed  Google Scholar 

  26. Abicht JM, Mayr T, Reichart B, Buchholz S, Werner F, Lutzmann I, Schmoeckel M, Bauer A, Thormann M, Langenmayer M, Herbach N, Pohla H, Herzog R, McGregor CG, Ayares D, Wolf E, Klymiuk N, Baehr A, Kind A, Hagl C, Ganswindt U, Belka C, Guethoff S, Brenner P (2015) Pre-clinical heterotopic intrathoracic heart xenotransplantation: a possibly useful clinical technique. Xenotransplantation 22(6):427–442. https://doi.org/10.1111/xen.12213

    Article  PubMed  Google Scholar 

  27. Mohiuddin MM, Reichart B, Byrne GW, McGregor CGA (2015) Current status of pig heart xenotransplantation. International journal of surgery (London, England) 23 (Pt B):234-239. doi:https://doi.org/10.1016/j.ijsu.2015.08.038

  28. Cooper DK, Keogh AM, Brink J, Corris PA, Klepetko W, Pierson RN, Schmoeckel M, Shirakura R, Warner Stevenson L (2000) Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 19(12):1125–1165. https://doi.org/10.1016/s1053-2498(00)00224-2

    Article  CAS  Google Scholar 

  29. Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258(1):241–258. https://doi.org/10.1111/imr.12152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Good AH, Cooper DK, Malcolm AJ, Ippolito RM, Koren E, Neethling FA, Ye Y, Zuhdi N, Lamontagne LR (1992) Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc 24(2):559–562

    PubMed  CAS  Google Scholar 

  31. Cooper DK, Good AH, Koren E, Oriol R, Malcolm AJ, Ippolito RM, Neethling FA, Ye Y, Romano E, Zuhdi N (1993) Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1(3):198–205. https://doi.org/10.1016/0966-3274(93)90047-c

    Article  PubMed  CAS  Google Scholar 

  32. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, Lancos CJ, Prabharasuth DD, Cheng J, Moran K, Hisashi Y, Mueller N, Yamada K, Greenstein JL, Hawley RJ, Patience C, Awwad M, Fishman JA, Robson SC, Schuurman HJ, Sachs DH, Cooper DK (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11(1):29–31. https://doi.org/10.1038/nm1171

    Article  PubMed  CAS  Google Scholar 

  33. Bouhours D, Pourcel C, Bouhours JE (1996) Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Gal alpha 1-3Gal), blood group H determinant and N-glycolylneuraminic acid. Glycoconj J 13(6):947–953. https://doi.org/10.1007/bf01053190

    Article  PubMed  CAS  Google Scholar 

  34. Padler-Karavani V, Varki A (2011) Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 18(1):1–5. https://doi.org/10.1111/j.1399-3089.2011.00622.x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG (2014) Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21(6):543–554. https://doi.org/10.1111/xen.12124

    Article  PubMed  PubMed Central  Google Scholar 

  36. Byrne GW, Stalboerger PG, Du Z, Davis TR, McGregor CG (2011) Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91(3):287–292. https://doi.org/10.1097/TP.0b013e318203c27d

    Article  PubMed  CAS  Google Scholar 

  37. Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20(1):27–35. https://doi.org/10.1111/xen.12019

    Article  PubMed  Google Scholar 

  38. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22(3):194–202. https://doi.org/10.1111/xen.12161

    Article  PubMed  PubMed Central  Google Scholar 

  39. Waterworth PD, Dunning J, Tolan M, Cozzi E, Langford G, Chavez G, White D, Wallwork J (1998) Life-supporting pig-to-baboon heart xenotransplantation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 17(12):1201–1207

    CAS  Google Scholar 

  40. Schmoeckel M, Bhatti FN, Zaidi A, Cozzi E, Waterworth PD, Tolan MJ, Pino-Chavez G, Goddard M, Warner RG, Langford GA, Dunning JJ, Wallwork J, White DJ (1998) Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation 65(12):1570–1577. https://doi.org/10.1097/00007890-199806270-00006

    Article  PubMed  CAS  Google Scholar 

  41. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH (1999) Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 6(3):194–200. https://doi.org/10.1034/j.1399-3089.1999.00017.x

    Article  PubMed  CAS  Google Scholar 

  42. Vial CM, Ostlie DJ, Bhatti FN, Cozzi E, Goddard M, Chavez GP, Wallwork J, White DJ, Dunning JJ (2000) Life supporting function for over one month of a transgenic porcine heart in a baboon. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 19(2):224–229. https://doi.org/10.1016/s1053-2498(99)00099-6

    Article  CAS  Google Scholar 

  43. Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, Vaught T, Horvath KA, Mohiuddin MM (2017) Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24(6). https://doi.org/10.1111/xen.12330

  44. Bhatti FN, Schmoeckel M, Zaidi A, Cozzi E, Chavez G, Goddard M, Dunning JJ, Wallwork J, White DJ (1999) Three-month survival of HDAFF transgenic pig hearts transplanted into primates. Transplant Proc 31(1–2):958. https://doi.org/10.1016/s0041-1345(98)01855-7

    Article  PubMed  CAS  Google Scholar 

  45. Lam TT, Paniagua R, Shivaram G, Schuurman HJ, Borie DC, Morris RE (2004) Anti-non-Gal porcine endothelial cell antibodies in acute humoral xenograft rejection of hDAF-transgenic porcine hearts in cynomolgus monkeys. Xenotransplantation 11(6):531–535. https://doi.org/10.1111/j.1399-3089.2004.00175.x

    Article  PubMed  Google Scholar 

  46. Kuwaki K, Knosalla C, Dor FJ, Gollackner B, Tseng YL, Houser S, Mueller N, Prabharasuth D, Alt A, Moran K, Cheng J, Behdad A, Sachs DH, Fishman JA, Schuurman HJ, Awwad M, Cooper DK (2004) Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 4(3):363–372. https://doi.org/10.1111/j.1600-6143.2004.00353.x

    Article  CAS  Google Scholar 

  47. Singh AK, Chan JL, DiChiacchio L, Hardy NL, Corcoran PC, Lewis BGT, Thomas ML, Burke AP, Ayares D, Horvath KA, Mohiuddin MM (2019) Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation 26(2):e12465. https://doi.org/10.1111/xen.12465

    Article  PubMed  Google Scholar 

  48. Byrne GW, Davies WR, Oi K, Rao VP, Teotia SS, Ricci D, Tazelaar HD, Walker RC, Logan JS, McGregor CG (2006) Increased immunosuppression, not anticoagulation, extends cardiac xenograft survival. Transplantation 82(12):1787–1791. https://doi.org/10.1097/01.tp.0000251387.40499.0f

    Article  PubMed  Google Scholar 

  49. Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CG (2011) Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18(1):14–27. https://doi.org/10.1111/j.1399-3089.2010.00620.x

    Article  PubMed  Google Scholar 

  50. Mohiuddin MM, Corcoran PC, Singh AK, Azimzadeh A, Hoyt RF Jr, Thomas ML, Eckhaus MA, Seavey C, Ayares D, Pierson RN 3rd, Horvath KA (2012) B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 12(3):763–771. https://doi.org/10.1111/j.1600-6143.2011.03846.x

    Article  CAS  Google Scholar 

  51. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML 3rd, Lewis BG, Eckhaus M, Dabkowski NL, Belli AJ, Reimann KA, Ayares D, Horvath KA (2014) Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation 21(1):35–45. https://doi.org/10.1111/xen.12066

    Article  PubMed  Google Scholar 

  52. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML 3rd, Lewis BG, Eckhaus M, Reimann KA, Klymiuk N, Wolf E, Ayares D, Horvath KA (2014) One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 14(2):488–489. https://doi.org/10.1111/ajt.12562

    Article  CAS  Google Scholar 

  53. Kim H, Hawthorne WJ, Kang HJ, Lee YJ, Hwang JI, Hurh S, Ro H, Jeong JC, Cho B, Yang J, Ahn C (2015) Human thrombomodulin regulates complement activation as well as the coagulation cascade in xeno-immune response. Xenotransplantation 22(4):260–272. https://doi.org/10.1111/xen.12173

    Article  PubMed  Google Scholar 

  54. Jung SH, Hwang JH, Kim SE, Young Kyu K, Park HC, Lee HT (2017) The potentiating effect of hTFPI in the presence of hCD47 reduces the cytotoxicity of human macrophages. Xenotransplantation 24(3). https://doi.org/10.1111/xen.12301

  55. Choi K, Shim J, Ko N, Eom H, Kim J, Lee JW, Jin DI, Kim H (2017) Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39. Transgenic Res 26(2):209–224. https://doi.org/10.1007/s11248-016-9996-7

    Article  PubMed  CAS  Google Scholar 

  56. Abicht JM, Sfriso R, Reichart B, Langin M, Gahle K, Puga Yung GL, Seebach JD, Rieben R, Ayares D, Wolf E, Klymiuk N, Baehr A, Kind A, Mayr T, Bauer A (2018) Multiple genetically modified GTKO/hCD46/HLA-E/hbeta2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation 25(5):e12390. https://doi.org/10.1111/xen.12390

    Article  PubMed  Google Scholar 

  57. Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, Brinkmann A, Niemann H, Schwinzer R (2018) Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 25(5):e12387. https://doi.org/10.1111/xen.12387

    Article  PubMed  Google Scholar 

  58. Davis EA, Pruitt SK, Greene PS, Ibrahim S, Lam TT, Levin JL, Baldwin WM 3rd, Sanfilippo F (1996) Inhibition of complement, evoked antibody, and cellular response prevents rejection of pig-to-primate cardiac xenografts. Transplantation 62(7):1018–1023. https://doi.org/10.1097/00007890-199610150-00022

    Article  PubMed  CAS  Google Scholar 

  59. Kobayashi T, Taniguchi S, Neethling FA, Rose AG, Hancock WW, Ye Y, Niekrasz M, Kosanke S, Wright LJ, White DJ, Cooper DK (1997) Delayed xenograft rejection of pig-to-baboon cardiac transplants after cobra venom factor therapy. Transplantation 64(9):1255–1261. https://doi.org/10.1097/00007890-199711150-00005

    Article  PubMed  CAS  Google Scholar 

  60. McGregor CG, Ricci D, Miyagi N, Stalboerger PG, Du Z, Oehler EA, Tazelaar HD, Byrne GW (2012) Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation 93(7):686–692. https://doi.org/10.1097/TP.0b013e3182472850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science (New York, NY) 357(6357):1303–1307. https://doi.org/10.1126/science.aan4187

    Article  CAS  Google Scholar 

  62. Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D (2019) Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 26(4):e12516. https://doi.org/10.1111/xen.12516

    Article  PubMed  Google Scholar 

  63. Cooper DKC, Ezzelarab M, Iwase H, Hara H (2018) Perspectives on the optimal genetically engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102(12):1974–1982. https://doi.org/10.1097/TP.0000000000002443

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yamada K, Sykes M, Sachs DH (2017) Tolerance in xenotransplantation. Current opinion in organ transplantation 22(6):522–528. https://doi.org/10.1097/MOT.0000000000000466

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu L, He C, Liu J, Lv Z, Wang G, Gao H, Dai Y, Cooper DKC, Cai Z, Mou L (2018) Transplant tolerance: current insights and strategies for long-term survival of xenografts. Arch Immunol Ther Exp 66(5):355–364. https://doi.org/10.1007/s00005-018-0517-7

    Article  CAS  Google Scholar 

  66. Llore NP, Bruestle KA, Griesemer A (2018) Xenotransplantation tolerance: applications for recent advances in modified swine. Current opinion in organ transplantation 23(6):642–648. https://doi.org/10.1097/MOT.0000000000000585

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cooper DK, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R (2016) The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23(2):83–105. https://doi.org/10.1111/xen.12219

    Article  PubMed  Google Scholar 

  68. Kobayashi T, Cooper DK (1999) Anti-Gal, alpha-Gal epitopes, and xenotransplantation. Subcell Biochem 32:229–257. https://doi.org/10.1007/978-1-4615-4771-6_10

    Article  PubMed  CAS  Google Scholar 

  69. Muller-Eberhard HJ (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57:321–347. https://doi.org/10.1146/annurev.bi.57.070188.001541

    Article  PubMed  CAS  Google Scholar 

  70. Morgan BP (1995) Physiology and pathophysiology of complement: progress and trends. Crit Rev Clin Lab Sci 32(3):265–298. https://doi.org/10.3109/10408369509084686

    Article  PubMed  CAS  Google Scholar 

  71. Sandrin MS, Fodor WL, Mouhtouris E, Osman N, Cohney S, Rollins SA, Guilmette ER, Setter E, Squinto SP, McKenzie IF (1995) Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1(12):1261–1267. https://doi.org/10.1038/nm1295-1261

    Article  PubMed  CAS  Google Scholar 

  72. Cabezas-Cruz A, Mateos-Hernandez L, Alberdi P, Villar M, Riveau G, Hermann E, Schacht AM, Khalife J, Correia-Neves M, Gortazar C, de la Fuente J (2017) Effect of blood type on anti-alpha-Gal immunity and the incidence of infectious diseases. Exp Mol Med 49(3):e301. https://doi.org/10.1038/emm.2016.164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM (1988) Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 56(7):1730–1737

    Article  CAS  Google Scholar 

  74. Cooper DK, Human PA, Lexer G, Rose AG, Rees J, Keraan M, Du Toit E (1988) Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. The Journal of heart transplantation 7(3):238–246

    PubMed  CAS  Google Scholar 

  75. Fischel RJ, Matas AJ, Perry E, Dalmasso A, Noreen H, Bolman RM 3rd (1992) Plasma exchange, organ perfusion, and immunosuppression reduce “natural” antibody levels as measured by binding to xenogeneic endothelial cells and prolong discordant xenograft survival. Transplant Proc 24(2):574–575

    PubMed  CAS  Google Scholar 

  76. Besse T, Duck L, Latinne D, Gianello P, Squifflet JP, Lievens M, Tomasi JP, Lavenne-Pardonge EM, Lambotte L, Alexandre GP et al (1994) Effect of plasmapheresis and splenectomy on parameters involved in vascular rejection of discordant xenografts in the swine to baboon model. Transplant Proc 26(2):1042–1044

    PubMed  CAS  Google Scholar 

  77. Taniguchi S, Neethling FA, Korchagina EY, Bovin N, Ye Y, Kobayashi T, Niekrasz M, Li S, Koren E, Oriol R, Cooper DK (1996) In vivo immunoadsorption of antipig antibodies in baboons using a specific Gal (alpha)1-3Gal column. Transplantation 62(10):1379–1384. https://doi.org/10.1097/00007890-199611270-00001

    Article  PubMed  CAS  Google Scholar 

  78. Kobayashi T, Taniguchi S, Ye Y, Niekrasz M, Kosanke S, Neethling FA, Wright LJ, Rose AG, White DJ, Cooper DK (1996) Delayed xenograft rejection in C3-depleted discordant (pig-to-baboon) cardiac xenografts treated with cobra venom factor. Transplant Proc 28(2):560

    PubMed  CAS  Google Scholar 

  79. Byrne GW, Azimzadeh AM, Ezzelarab M, Tazelaar HD, Ekser B, Pierson RN, Robson SC, Cooper DK, McGregor CG (2013) Histopathologic insights into the mechanism of anti-non-Gal antibody-mediated pig cardiac xenograft rejection. Xenotransplantation 20(5):292–307. https://doi.org/10.1111/xen.12050

    Article  PubMed  PubMed Central  Google Scholar 

  80. Platt JL (2000) Acute vascular rejection. Transplant Proc 32(5):839–840. https://doi.org/10.1016/s0041-1345(00)01000-9

    Article  PubMed  CAS  Google Scholar 

  81. Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJ, Houser SL, Robson SC, Schuurman HJ, Cooper DK, Sachs DH, Colvin RB, Shimizu A (2008) Rejection of cardiac xenografts transplanted from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 8(12):2516–2526. https://doi.org/10.1111/j.1600-6143.2008.02444.x

    Article  CAS  Google Scholar 

  82. Xu H, Gundry SR, Hancock WW, Matsumiya G, Zuppan CW, Morimoto T, Slater J, Bailey LL (1998) Prolonged discordant xenograft survival and delayed xenograft rejection in a pig-to-baboon orthotopic cardiac xenograft model. J Thorac Cardiovasc Surg 115(6):1342–1349. https://doi.org/10.1016/s0022-5223(98)70218-1

    Article  PubMed  CAS  Google Scholar 

  83. Itescu S, Kwiatkowski P, Artrip JH, Wang SF, Ankersmit J, Minanov OP, Michler RE (1998) Role of natural killer cells, macrophages, and accessory molecule interactions in the rejection of pig-to-primate xenografts beyond the hyperacute period. Hum Immunol 59(5):275–286. https://doi.org/10.1016/s0198-8859(98)00026-3

    Article  PubMed  CAS  Google Scholar 

  84. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. https://doi.org/10.1146/annurev.immunol.23.021704.115526

    Article  PubMed  CAS  Google Scholar 

  85. Watier H, Guillaumin JM, Vallee I, Thibault G, Gruel Y, Lebranchu Y, Bardos P (1996) Human NK cell-mediated direct and IgG-dependent cytotoxicity against xenogeneic porcine endothelial cells. Transpl Immunol 4(4):293–299. https://doi.org/10.1016/s0966-3274(96)80050-5

    Article  PubMed  CAS  Google Scholar 

  86. Watier H, Guillaumin JM, Piller F, Lacord M, Thibault G, Lebranchu Y, Monsigny M, Bardos P (1996) Removal of terminal alpha-galactosyl residues from xenogeneic porcine endothelial cells. Decrease in complement-mediated cytotoxicity but persistence of IgG1-mediated antibody-dependent cell-mediated cytotoxicity. Transplantation 62(1):105–113. https://doi.org/10.1097/00007890-199607150-00020

    Article  PubMed  CAS  Google Scholar 

  87. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258. https://doi.org/10.1146/annurev-immunol-020711-075005

    Article  PubMed  CAS  Google Scholar 

  88. Sullivan JA, Oettinger HF, Sachs DH, Edge AS (1997) Analysis of polymorphism in porcine MHC class I genes: alterations in signals recognized by human cytotoxic lymphocytes. Journal of immunology (Baltimore, Md : 1950) 159(5):2318–2326

    CAS  Google Scholar 

  89. Puga Yung G, Schneider MKJ, Seebach JD (2017) The role of NK cells in pig-to-human xenotransplantation. J Immunol Res 2017:4627384. https://doi.org/10.1155/2017/4627384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lin Y, Vandeputte M, Waer M (1997) Natural killer cell- and macrophage-mediated rejection of concordant xenografts in the absence of T and B cell responses. Journal of immunology (Baltimore, Md : 1950) 158(12):5658–5667

    CAS  Google Scholar 

  91. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, Sykes M, Yang YG, Ohdan H (2007) Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A 104(12):5062–5066. https://doi.org/10.1073/pnas.0609661104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Greenwald AG, Jin R, Waddell TK (2009) Galectin-3-mediated xenoactivation of human monocytes. Transplantation 87(1):44–51. https://doi.org/10.1097/TP.0b013e318191e6b4

    Article  PubMed  CAS  Google Scholar 

  93. Basker M, Alwayn IP, Buhler L, Harper D, Abraham S, Kruger Gray H, DeAngelis H, Awwad M, Down J, Rieben R, White-Scharf ME, Sachs DH, Thall A, Cooper DK (2001) Clearance of mobilized porcine peripheral blood progenitor cells is delayed by depletion of the phagocytic reticuloendothelial system in baboons. Transplantation 72(7):1278–1285. https://doi.org/10.1097/00007890-200110150-00017

    Article  PubMed  CAS  Google Scholar 

  94. Peterson MD, Jin R, Hyduk S, Duchesneau P, Cybulsky MI, Waddell TK (2005) Monocyte adhesion to xenogeneic endothelium during laminar flow is dependent on alpha-Gal-mediated monocyte activation. Journal of immunology (Baltimore, Md : 1950) 174(12):8072–8081. https://doi.org/10.4049/jimmunol.174.12.8072

    Article  CAS  Google Scholar 

  95. El-Ouaghlidi A, Jahr H, Pfeiffer G, Hering BJ, Brandhorst D, Brandhorst H, Federlin K, Bretzel RG (1999) Cytokine mRNA expression in peripheral blood cells of immunosuppressed human islet transplant recipients. Journal of molecular medicine (Berlin, Germany) 77(1):115–117. https://doi.org/10.1007/s001090050315

    Article  CAS  Google Scholar 

  96. Cadili A, Kneteman N (2008) The role of macrophages in xenograft rejection. Transplant Proc 40(10):3289–3293. https://doi.org/10.1016/j.transproceed.2008.08.125

    Article  PubMed  CAS  Google Scholar 

  97. Maeda A, Lo PC, Sakai R, Noguchi Y, Kodama T, Yoneyama T, Toyama C, Wang HT, Esquivel E, Jiaravuthisan P, Choi TV, Takakura C, Eguchi H, Tazuke Y, Watanabe M, Nagashima H, Okuyama H, Miyagawa S (2020) A strategy for suppressing macrophage-mediated rejection in xenotransplantation. Transplantation 104(4):675–681. https://doi.org/10.1097/tp.0000000000003024

    Article  PubMed  CAS  Google Scholar 

  98. Yang YG (2010) CD47 in xenograft rejection and tolerance induction. Xenotransplantation 17(4):267–273. https://doi.org/10.1111/j.1399-3089.2010.00601.x

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sykes M (2018) IXA Honorary Member Lecture, 2017: the long and winding road to tolerance. Xenotransplantation 25(3):e12419. https://doi.org/10.1111/xen.12419

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L (2008) The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 45(4):1126–1135. https://doi.org/10.1016/j.molimm.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  101. Yan JJ, Koo TY, Lee HS, Lee WB, Kang B, Lee JG, Jang JY, Fang T, Ryu JH, Ahn C, Kim SJ, Yang J (2018) Role of human CD200 overexpression in pig-to-human xenogeneic immune response compared with human CD47 overexpression. Transplantation 102(3):406–416. https://doi.org/10.1097/tp.0000000000001966

    Article  PubMed  Google Scholar 

  102. Cella M, Dohring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M (1997) A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 185(10):1743–1751. https://doi.org/10.1084/jem.185.10.1743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jiaravuthisan P, Maeda A, Takakura C, Wang HT, Sakai R, Shabri AM, Lo PC, Matsuura R, Kodama T, Eguchi H, Okuyama H, Miyagawa S (2018) A membrane-type surfactant protein D (SP-D) suppresses macrophage-mediated cytotoxicity in swine endothelial cells. Transpl Immunol 47:44–48. https://doi.org/10.1016/j.trim.2018.02.003

    Article  PubMed  CAS  Google Scholar 

  104. Maeda A, Kawamura T, Nakahata K, Ueno T, Usui N, Eguchi H, Miyagawa S (2014) Monocytic suppressor cells derived from peripheral blood suppress xenogenic natural killer cell lysis. Transplant Proc 46(4):1254–1255. https://doi.org/10.1016/j.transproceed.2013.11.025

    Article  PubMed  CAS  Google Scholar 

  105. Davila E, Byrne GW, LaBreche PT, McGregor HC, Schwab AK, Davies WR, Rao VP, Oi K, Tazelaar HD, Logan JS, McGregor CG (2006) T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation 13(1):31–40. https://doi.org/10.1111/j.1399-3089.2005.00258.x

    Article  PubMed  Google Scholar 

  106. Hosiawa KA, Wang H, DeVries ME, Garcia B, Jiang J, Zhou D, Cameron MJ, Zhong R, Kelvin DJ (2006) Regulation of B- and T-cell mediated xenogeneic transplant rejection by interleukin 12. Transplantation 81(2):265–272. https://doi.org/10.1097/01.tp.0000196725.53277.60

    Article  PubMed  CAS  Google Scholar 

  107. Sebille F, Guillet M, Brouard S, Gagne K, Petzold T, Blancho G, Vanhove B, Soulillou JP (2001) T-cell-mediated rejection of vascularized xenografts in the absence of induced anti-donor antibody response. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 1(1):21–28. https://doi.org/10.1034/j.1600-6143.2001.010106.x

    Article  CAS  Google Scholar 

  108. Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ (2018) T cell allorecognition pathways in solid organ transplantation. Front Immunol 9:2548. https://doi.org/10.3389/fimmu.2018.02548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Higginbotham L, Ford ML, Newell KA, Adams AB (2015) Preventing T cell rejection of pig xenografts. International journal of surgery (London, England) 23 (Pt B):285-290. doi:https://doi.org/10.1016/j.ijsu.2015.07.722

  110. Dorling A, Lombardi G, Binns R, Lechler RI (1996) Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol 26(6):1378–1387. https://doi.org/10.1002/eji.1830260630

    Article  PubMed  CAS  Google Scholar 

  111. Samy KP, Butler JR, Li P, Cooper DKC, Ekser B (2017) The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res 2017:8415205. https://doi.org/10.1155/2017/8415205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S (2020) An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 235(5):4183–4197. https://doi.org/10.1002/jcp.29369

    Article  PubMed  CAS  Google Scholar 

  113. Iwase H, Ekser B, Satyananda V, Bhama J, Hara H, Ezzelarab M, Klein E, Wagner R, Long C, Thacker J, Li J, Zhou H, Jiang M, Nagaraju S, Zhou H, Veroux M, Bajona P, Wijkstrom M, Wang Y, Phelps C, Klymiuk N, Wolf E, Ayares D, Cooper DK (2015) Pig-to-baboon heterotopic heart transplantation--exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation 22(3):211–220. https://doi.org/10.1111/xen.12167

    Article  PubMed  PubMed Central  Google Scholar 

  114. Koshika T, Phelps C, Fang J, Lee SE, Fujita M, Ayares D, Cooper DK, Hara H (2011) Relative efficiency of porcine and human cytotoxic T-lymphocyte antigen 4 immunoglobulin in inhibiting human CD4+ T-cell responses co-stimulated by porcine and human B7 molecules. Immunology 134(4):386–397. https://doi.org/10.1111/j.1365-2567.2011.03496.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Houser SL, Kuwaki K, Knosalla C, Dor FJ, Gollackner B, Cheng J, Shimizu A, Schuurman HJ, Cooper DK (2004) Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation 11(5):416–425. https://doi.org/10.1111/j.1399-3089.2004.00155.x

    Article  PubMed  Google Scholar 

  116. McGregor CG, Teotia SS, Byrne GW, Michaels MG, Risdahl JM, Schirmer JM, Tazelaar HD, Walker RC, Logan JS (2004) Cardiac xenotransplantation: progress toward the clinic. Transplantation 78(11):1569–1575. https://doi.org/10.1097/01.tp.0000147302.64947.43

    Article  PubMed  Google Scholar 

  117. De Salvatore S, Segreto A, Chiusaroli A, Congiu S, Bizzarri F (2015) Role of xenotransplantation in cardiac transplantation. J Card Surg 30(1):111–116. https://doi.org/10.1111/jocs.12454

    Article  PubMed  Google Scholar 

  118. Briffa NP, Shorthouse R, Chan J, Silva H, Billingham M, Brazelton T, Morris RE (2004) Histological and immunological characteristics of, and the effect of immunosuppressive treatment on, xenograft vasculopathy. Xenotransplantation 11(2):149–159. https://doi.org/10.1046/j.1399-3089.2003.00099.x

    Article  PubMed  Google Scholar 

  119. Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H (2018) Overcoming coagulation dysregulation in pig solid organ transplantation in nonhuman primates: recent progress. Transplantation 102(7):1050–1058. https://doi.org/10.1097/tp.0000000000002171

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lin CC, Cooper DK, Dorling A (2009) Coagulation dysregulation as a barrier to xenotransplantation in the primate. Transpl Immunol 21(2):75–80. https://doi.org/10.1016/j.trim.2008.10.008

    Article  PubMed  CAS  Google Scholar 

  121. Cowan PJ, Robson SC, d’Apice AJ (2011) Controlling coagulation dysregulation in xenotransplantation. Current opinion in organ transplantation 16(2):214–221. https://doi.org/10.1097/MOT.0b013e3283446c65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Knosalla C, Yazawa K, Behdad A, Bodyak N, Shang H, Buhler L, Houser S, Gollackner B, Griesemer A, Schmitt-Knosalla I, Schuurman HJ, Awwad M, Sachs DH, Cooper DK, Yamada K, Usheva A, Robson SC (2009) Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 9(5):1006–1016. https://doi.org/10.1111/j.1600-6143.2009.02602.x

    Article  CAS  Google Scholar 

  123. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949. https://doi.org/10.1056/NEJMra0801082

    Article  PubMed  CAS  Google Scholar 

  124. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451(7181):914–918. https://doi.org/10.1038/nature06797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Denorme F, Vanhoorelbeke K, De Meyer SF (2019) von Willebrand factor and platelet glycoprotein Ib: a thromboinflammatory axis in stroke. Frontiers in immunology 10:2884. https://doi.org/10.3389/fimmu.2019.02884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ (2008) Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 8(6):1101–1112. https://doi.org/10.1111/j.1600-6143.2008.02210.x

    Article  CAS  Google Scholar 

  127. Schulte Am Esch J 2nd, Robson SC, Knoefel WT, Hosch SB, Rogiers X (2005) O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors. Xenotransplantation 12(1):30–37. https://doi.org/10.1111/j.1399-3089.2004.00187.x

    Article  PubMed  Google Scholar 

  128. Kopp CW, Robson SC, Siegel JB, Anrather J, Winkler H, Grey S, Kaczmarek E, Bach FH, Geczy CL (1998) Regulation of monocyte tissue factor activity by allogeneic and xenogeneic endothelial cells. Thromb Haemost 79(3):529–538

    Article  CAS  Google Scholar 

  129. Rataj D, Werwitzke S, Haarmeijer B, Winkler M, Ramackers W, Petersen B, Niemann H, Wunsch A, Bahr A, Klymiuk N, Wolf E, Abicht JM, Ayares D, Tiede A (2016) Inhibition of complement component C5 prevents clotting in an ex vivo model of xenogeneic activation of coagulation. Xenotransplantation 23(2):117–127. https://doi.org/10.1111/xen.12218

    Article  PubMed  Google Scholar 

  130. Chen D, Weber M, McVey JH, Kemball-Cook G, Tuddenham EG, Lechler RI, Dorling A (2004) Complete inhibition of acute humoral rejection using regulated expression of membrane-tethered anticoagulants on xenograft endothelium. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 4(12):1958–1963. https://doi.org/10.1111/j.1600-6143.2004.00625.x

    Article  CAS  Google Scholar 

  131. Ezzelarab MB, Ekser B, Azimzadeh A, Lin CC, Zhao Y, Rodriguez R, Echeverri GJ, Iwase H, Long C, Hara H, Ayares D, Pierson RN, Thomson AW, Cooper DK (2015) Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation 22(1):32–47. https://doi.org/10.1111/xen.12133

    Article  PubMed  Google Scholar 

  132. Iwase H, Liu H, Li T, Zhang Z, Gao B, Hara H, Wijkstrom M, Long C, Saari R, Ayares D, Cooper DKC, Ezzelarab MB (2017) Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation 24(2). https://doi.org/10.1111/xen.12296

  133. Iwase H, Ekser B, Zhou H, Liu H, Satyananda V, Humar R, Humar P, Hara H, Long C, Bhama JK, Bajona P, Wang Y, Wijkstrom M, Ayares D, Ezzelarab MB, Cooper DK (2015) Further evidence for sustained systemic inflammation in xenograft recipients (SIXR). Xenotransplantation 22(5):399–405. https://doi.org/10.1111/xen.12182

    Article  PubMed  PubMed Central  Google Scholar 

  134. Christenson RH, deFilippi CP, Kreutzer D (2005) Biomarkers of ischemia in patients with known coronary artery disease: do interleukin-6 and tissue factor measurements during dobutamine stress echocardiography give additional insight? Circulation 112(21):3215–3217. https://doi.org/10.1161/circulationaha.105.581918

    Article  PubMed  Google Scholar 

  135. Ikonomidis I, Athanassopoulos G, Lekakis J, Venetsanou K, Marinou M, Stamatelopoulos K, Cokkinos DV, Nihoyannopoulos P (2005) Myocardial ischemia induces interleukin-6 and tissue factor production in patients with coronary artery disease: a dobutamine stress echocardiography study. Circulation 112(21):3272–3279. https://doi.org/10.1161/circulationaha.104.532259

    Article  PubMed  CAS  Google Scholar 

  136. Strukova S (2006) Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Frontiers in bioscience : a journal and virtual library 11:59–80. https://doi.org/10.2741/1780

    Article  CAS  Google Scholar 

  137. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser A-L, Herrmann D, Barg-Kues B, Carnwath JW, Klose J, Tiede A, Friedrich L, Baars W, Schwinzer R, Winkler M, Niemann H (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18(6):355–368. https://doi.org/10.1111/j.1399-3089.2011.00674.x

    Article  PubMed  Google Scholar 

  138. Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser A-L, Schwinzer R, Hinkel R, Kupatt C, Niemann H (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16(6):522–534. https://doi.org/10.1111/j.1399-3089.2009.00556.x

    Article  PubMed  Google Scholar 

  139. Rieblinger B, Fischer K, Kind A, Saller BS, Baars W, Schuster M, Wolf-van Buerck L, Schäffler A, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Flisikowski K, Wolf E, Seissler J, Schwinzer R, Schnieke A (2018) Strong xenoprotective function by single-copy transgenes placed sequentially at a permissive locus. Xenotransplantation 25(2):e12382. https://doi.org/10.1111/xen.12382

    Article  PubMed  Google Scholar 

  140. Byrne GW, McGregor CG (2012) Cardiac xenotransplantation: progress and challenges. Current opinion in organ transplantation 17(2):148–154. https://doi.org/10.1097/MOT.0b013e3283509120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Steen S, Paskevicius A, Liao Q, Sjöberg T (2016) Safe orthotopic transplantation of hearts harvested 24 hours after brain death and preserved for 24 hours. Scand Cardiovasc J 50(3):193–200. https://doi.org/10.3109/14017431.2016.1154598

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, Dwyer KM, Nottle MB, Harrison SJ, d’Apice AJ, Robson SC, Cowan PJ, Gumina RJ (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52(5):958–961. https://doi.org/10.1016/j.yjmcc.2012.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Novitzky D, Cooper DK (2014) Thyroid hormone and the stunned myocardium. J Endocrinol 223(1):R1–R8. https://doi.org/10.1530/joe-14-0389

    Article  PubMed  CAS  Google Scholar 

  144. Iwase H, Ekser B, Hara H, Ezzelarab MB, Long C, Thomson AW, Ayares D, Cooper DK (2016) Thyroid hormone: relevance to xenotransplantation. Xenotransplantation 23(4):293–299. https://doi.org/10.1111/xen.12243

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tanabe T, Watanabe H, Shah JA, Sahara H, Shimizu A, Nomura S, Asfour A, Danton M, Boyd L, Dardenne Meyers A, Ekanayake-Alper DK, Sachs DH, Yamada K (2017) Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 17(7):1778–1790. https://doi.org/10.1111/ajt.14210

    Article  CAS  Google Scholar 

  146. Denner J (2016) How active are porcine endogenous retroviruses (PERVs)? Viruses 8(8). https://doi.org/10.3390/v8080215

  147. Denner J, Tonjes RR (2012) Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 25(2):318–343. https://doi.org/10.1128/cmr.05011-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Harrison I, Takeuchi Y, Bartosch B, Stoye JP (2004) Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol 78(24):13871–13879. https://doi.org/10.1128/jvi.78.24.13871-13879.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Scobie L, Padler-Karavani V, Le Bas-Bernardet S, Crossan C, Blaha J, Matouskova M, Hector RD, Cozzi E, Vanhove B, Charreau B, Blancho G, Bourdais L, Tallacchini M, Ribes JM, Yu H, Chen X, Kracikova J, Broz L, Hejnar J, Vesely P, Takeuchi Y, Varki A, Soulillou J-P (2013) Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. Journal of immunology (Baltimore, Md : 1950) 191(6):2907–2915. https://doi.org/10.4049/jimmunol.1301195

    Article  CAS  Google Scholar 

  150. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R (2014) Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 21(4):309–323. https://doi.org/10.1111/xen.12102

    Article  PubMed  Google Scholar 

  151. Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3(3):282–286. https://doi.org/10.1038/nm0397-282

    Article  PubMed  CAS  Google Scholar 

  152. Moalic Y, Blanchard Y, Felix H, Jestin A (2006) Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol 80(22):10980–10988. https://doi.org/10.1128/jvi.00904-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Wilson CA, Wong S, VanBrocklin M, Federspiel MJ (2000) Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 74(1):49–56. https://doi.org/10.1128/jvi.74.1.49-56.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Denner J, Specke V, Thiesen U, Karlas A, Kurth R (2003) Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 314(1):125–133. https://doi.org/10.1016/s0042-6822(03)00428-8

    Article  PubMed  CAS  Google Scholar 

  155. Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science (New York, NY) 350(6264):1101–1104. https://doi.org/10.1126/science.aad1191

    Article  CAS  Google Scholar 

  156. Ross MJ, Coates PT (2018) Using CRISPR to inactivate endogenous retroviruses in pigs: an important step toward safe xenotransplantation? Kidney Int 93(1):4–6. https://doi.org/10.1016/j.kint.2017.11.004

    Article  PubMed  CAS  Google Scholar 

  157. Denner J (2017) Advances in organ transplant from pigs. Science (New York, NY) 357(6357):1238–1239. https://doi.org/10.1126/science.aao6334

    Article  CAS  Google Scholar 

  158. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771. https://doi.org/10.1038/nbt.4192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Denner J (2017) Paving the path toward porcine organs for transplantation. N Engl J Med 377(19):1891–1893. https://doi.org/10.1056/NEJMcibr1710853

    Article  PubMed  Google Scholar 

  160. Waechter A, Denner J (2014) Novel neutralising antibodies targeting the N-terminal helical region of the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV). Immunol Res 58(1):9–19. https://doi.org/10.1007/s12026-013-8430-y

    Article  PubMed  CAS  Google Scholar 

  161. Denner J (2017) Can antiretroviral drugs be used to treat porcine endogenous retrovirus (PERV) infection after xenotransplantation? Viruses 9(8). https://doi.org/10.3390/v9080213

  162. Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM (2020) Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.04.001

  163. Liu Y, Qin L, Tong R, Liu T, Ling C, Lei T, Zhang D, Wang Y, Deng S (2020) Regulatory changes in China on xenotransplantation and related products. Xenotransplantation:e12601. doi:https://doi.org/10.1111/xen.12601

  164. Kwon I, Park C-G, Lee S (2020) Regulatory aspects of xenotransplantation in Korea. Xenotransplantation:e12602. doi:https://doi.org/10.1111/xen.12602

  165. Cooper DKC, Pierson RN, Hering BJ, Mohiuddin MM, Fishman JA, Denner J, Ahn C, Azimzadeh AM, Buhler LH, Cowan PJ, Hawthorne WJ, Kobayashi T, Sachs DH (2017) Regulation of clinical xenotransplantation-time for a reappraisal. Transplantation 101(8):1766–1769. https://doi.org/10.1097/TP.0000000000001683

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cooper DKC, Wijkstrom M, Hariharan S, Chan JL, Singh A, Horvath K, Mohiuddin M, Cimeno A, Barth RN, LaMattina JC, Pierson RN (2017) Selection of patients for initial clinical trials of solid organ xenotransplantation. Transplantation 101(7):1551–1558. https://doi.org/10.1097/TP.0000000000001582

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science (New York, NY) 365(6452):482–487. https://doi.org/10.1126/science.aav9051

    Article  CAS  Google Scholar 

  168. Dasgupta Q, Black LD (2019) A fresh slate for 3D bioprinting. Science (New York, NY) 365(6452):446–447. https://doi.org/10.1126/science.aay0478

    Article  CAS  Google Scholar 

  169. Dal Sasso E, Bagno A, Scuri STG, Gerosa G, Iop L (2019) The biocompatibility challenges in the total artificial heart evolution. Annu Rev Biomed Eng 21:85–110. https://doi.org/10.1146/annurev-bioeng-060418-052432

    Article  PubMed  CAS  Google Scholar 

  170. Murry CE, MacLellan WR (2020) Stem cells and the heart-the road ahead. Science (New York, NY) 367(6480):854–855. https://doi.org/10.1126/science.aaz3650

    Article  CAS  Google Scholar 

  171. Davis DR (2019) Cardiac stem cells in the post-Anversa era. Eur Heart J 40(13):1039–1041. https://doi.org/10.1093/eurheartj/ehz098

    Article  PubMed  Google Scholar 

  172. Desgres M, Menasché P (2019) Clinical translation of pluripotent stem cell therapies: challenges and considerations. Cell Stem Cell 25(5):594–606. https://doi.org/10.1016/j.stem.2019.10.001

    Article  PubMed  CAS  Google Scholar 

  173. Mancini D, Goldstein D, Taylor S, Chen L, Gass A, DeLair S, Pinney S (2017) Maximizing donor allocation: a review of UNOS region 9 donor heart turn-downs. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 17(12):3193–3198. https://doi.org/10.1111/ajt.14499

    Article  Google Scholar 

  174. Que W, Hu X, Fujino M, Terayama H, Sakabe K, Fukunishi N, Zhu P, Yi SQ, Yamada Y, Zhong L, Li XK (2019) Prolonged cold ischemia time in mouse heart transplantation using supercooling preservation. Transplantation. https://doi.org/10.1097/tp.0000000000003089

  175. Pegg DE (2010) The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60(3 Suppl):S36–S44. https://doi.org/10.1016/j.cryobiol.2010.02.003

    Article  PubMed  Google Scholar 

  176. de Vries RJ, Yarmush M, Uygun K (2019) Systems engineering the organ preservation process for transplantation. Curr Opin Biotechnol 58:192–201. https://doi.org/10.1016/j.copbio.2019.05.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y, Mancini D, Camacho M, Zucker M, Leprince P, Padera R, Kobashigawa J (2015) Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet (London, England) 385(9987):2577–2584. https://doi.org/10.1016/S0140-6736(15)60261-6

    Article  Google Scholar 

  178. Chan JL, Kobashigawa JA, Reich HJ, Ramzy D, Thottam MM, Yu Z, Aintablian TL, Liou F, Patel JK, Kittleson MM, Czer LS, Trento A, Esmailian F (2017) Intermediate outcomes with ex-vivo allograft perfusion for heart transplantation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 36(3):258–263. https://doi.org/10.1016/j.healun.2016.08.015

    Article  Google Scholar 

  179. Stamp NL, Shah A, Vincent V, Wright B, Wood C, Pavey W, Cokis C, Chih S, Dembo L, Larbalestier R (2015) Successful heart transplant after ten hours out-of-body time using the TransMedics organ care system. Heart, lung & circulation 24(6):611–613. https://doi.org/10.1016/j.hlc.2015.01.005

    Article  Google Scholar 

  180. Dalle Ave AL, Shaw DM, Bernat JL (2016) Ethical issues in the use of extracorporeal membrane oxygenation in controlled donation after circulatory determination of death. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 16(8):2293–2299. https://doi.org/10.1111/ajt.13792

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2019-I2M-1-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangping Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Funding information was added.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, S., Ren, J. & Song, J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 27, 71–91 (2022). https://doi.org/10.1007/s10741-020-09989-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09989-x

Keywords

Navigation