Exercise testing for assessment of heart failure in adults with congenital heart disease

Abstract

Congenital heart disease (CHD)–related heart failure is common and associated with significant morbidity, mortality, and resource utilization. In adults with CHD (ACHD), exercise limitation is often underestimated. Quantitative assessment with cardiopulmonary exercise testing (CPET) provides a comprehensive evaluation of exercise capacity and can help risk stratify patients, particularly across serial testing. CPET parameters must be interpreted within the context of the underlying anatomy, specifically for patients with either single ventricle physiology and/or cyanosis. Acknowledging differences in CPET parameters between ACHD and non-ACHD patients with heart failure are also important considerations when evaluating the overall benefit of advanced heart failure therapies. CPET testing can also guide safe exercise recommendation, including those with ACHD-related heart failure.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2.
Figure 3

References

  1. 1.

    Verheugt CL et al (2008) Long-term prognosis of congenital heart defects: a systematic review. Int J Cardiol. 131(1):25–32

    PubMed  Article  Google Scholar 

  2. 2.

    Khairy P et al (2010) Changing mortality in congenital heart disease. J Am Coll Cardiol. 56(14):1149–1157

    PubMed  Article  Google Scholar 

  3. 3.

    Gilboa SM et al (2016) Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 134(2):101–109

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Burstein DS et al (2017) Hospitilization-related resource utilization in congenital heart disease with advanced heart failure. J Heart Lung Transplant. 36(4S):S262

    Article  Google Scholar 

  5. 5.

    Burchill LJ et al (2018) Hospitalization trends and health resource use for adult congenital heart disease-related heart failure. J Am Heart Assoc. 7(15):e008775

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Norozi K et al (2006) Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 97(8):1238–1243

    PubMed  Article  Google Scholar 

  7. 7.

    Opotowsky AR, Siddiqi OK, Webb GD (2009) Trends in hospitalizations for adults with congenital heart disease in the U.S. J Am Coll Cardiol. 54(5):460–467

    PubMed  Article  Google Scholar 

  8. 8.

    Diller GP et al (2005) Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 112(6):828–835

    PubMed  Article  Google Scholar 

  9. 9.

    Inuzuka R et al (2012) Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 125(2):250–259

    PubMed  Article  Google Scholar 

  10. 10.

    Khan AM, Paridon SM, Kim YY (2014) Cardiopulmonary exercise testing in adults with congenital heart disease. Expert Rev Cardiovasc Ther. 12(7):863–872

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Das BB et al (2019) Relation between New York Heart Association Functional class and objective measures of cardiopulmonary exercise in adults with congenital heart disease. Am J Cardiol. 123(11):1868–1873

    PubMed  Article  Google Scholar 

  12. 12.

    Menachem JN et al (2019) Cardiopulmonary exercise testing-a valuable tool, not gatekeeper when referring patients with adult congenital heart disease for transplant evaluation. World J Pediatr Congenit Heart Surg. 10(3):286–291

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Malhotra R et al (2016) Cardiopulmonary exercise testing in heart failure. JACC Heart Fail. 4(8):607–616

    PubMed  Article  Google Scholar 

  14. 14.

    Mancini DM et al (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 83(3):778–786

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema EK, Sun X, Whipp B (2012) Exercise testing and interpretation, in principles of exercise testing and interpretation. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. 16.

    Rosenthal M et al (1995) Comparison of cardiopulmonary adaptation during exercise in children after the atriopulmonary and total cavopulmonary connection Fontan procedures. Circulation. 91(2):372–378

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Marma AK et al (2016) Noninvasive cardiac output estimation by inert gas rebreathing in pediatric and congenital heart disease. Am Heart J. 174:80–88

    PubMed  Article  Google Scholar 

  18. 18.

    Opotowsky AR et al (2014) Inadequate venous return as a primary cause for Fontan circulatory limitation. J Heart Lung Transplant. 33(11):1194–1196

    PubMed  Article  Google Scholar 

  19. 19.

    Berry NC et al (2015) Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ. 5(4):610–618

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Balady GJ et al (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 122(2):191–225

    PubMed  Article  Google Scholar 

  21. 21.

    Miyamura M, Honda Y (1972) Oxygen intake and cardiac output during maximal treadmill and bicycle exercise. J Appl Physiol. 32(2):185–188

    PubMed  Article  Google Scholar 

  22. 22.

    Kempny A et al (2012) Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life--single centre experience and review of published data. Eur Heart J. 33(11):1386–1396

    PubMed  Article  Google Scholar 

  23. 23.

    Norozi K et al (2007) Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J Card Fail. 13(4):263–268

    PubMed  Article  Google Scholar 

  24. 24.

    Cole CR et al (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 341(18):1351–1357

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Qiu S et al (2017) Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies. J Am Heart Assoc. 6(5)

  26. 26.

    Lentner C (1990) Geigy scientific tables: heart and circulation. Ciba-Geigy

  27. 27.

    Alonso-Gonzalez R et al (2013) Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 127(8):882–890

    PubMed  Article  Google Scholar 

  28. 28.

    Guenette JA et al (2019) Ventilatory and sensory responses to incremental exercise in adults with a Fontan circulation. Am J Physiol Heart Circ Physiol. 316(2):H335–H344

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Francis DP et al (2000) Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J. 21(2):154–161

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ponikowski P et al (2001) Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 103(7):967–972

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Dimopoulos K et al (2006) Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 113(24):2796–2802

    PubMed  Article  Google Scholar 

  32. 32.

    Stout KK et al (2016) Chronic heart failure in congenital heart disease: a scientific statement from the American Heart Association. Circulation. 133(8):770–801

    PubMed  Article  Google Scholar 

  33. 33.

    Gratz A, Hess J, Hager A (2009) Self-estimated physical functioning poorly predicts actual exercise capacity in adolescents and adults with congenital heart disease. Eur Heart J. 30(4):497–504

    PubMed  Article  Google Scholar 

  34. 34.

    Ohuchi H et al (2019) Positive pediatric exercise capacity trajectory predicts better adult Fontan physiology rationale for early establishment of exercise habits. Int J Cardiol. 274:80–87

    PubMed  Article  Google Scholar 

  35. 35.

    Cunningham JW et al (2017) Decline in peak oxygen consumption over time predicts death or transplantation in adults with a Fontan circulation. Am Heart J. 189:184–192

    PubMed  Article  Google Scholar 

  36. 36.

    Giardini A et al (2007) Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am J Cardiol. 99(10):1462–1467

    PubMed  Article  Google Scholar 

  37. 37.

    Rhodes J et al (1990) Effect of right ventricular anatomy on the cardiopulmonary response to exercise. Implications for the Fontan procedure. Circulation. 81(6):1811–1817

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Diller GP et al (2006) Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 48(6):1250–1256

    PubMed  Article  Google Scholar 

  39. 39.

    Diller GP et al (2010) Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J. 31(24):3073–3083

    PubMed  Article  Google Scholar 

  40. 40.

    Sietsema KE et al (1986) Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 73(6):1137–1144

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Nathan AS et al (2015) Exercise oscillatory ventilation in patients with Fontan physiology. Circ Heart Fail. 8(2):304–311

    PubMed  Article  Google Scholar 

  42. 42.

    Yancy CW et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 62(16):e147–e239

    PubMed  Article  Google Scholar 

  43. 43.

    Ritt LE et al (2015) Additive prognostic value of a cardiopulmonary exercise test score in patients with heart failure and intermediate risk. Int J Cardiol. 178:262–264

    PubMed  Article  Google Scholar 

  44. 44.

    O'Neill JO et al (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation. 111(18):2313–2318

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Arena R et al (2009) Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. Circ Heart Fail. 2(2):113–120

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Gitt AK et al (2002) Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 106(24):3079–3084

    PubMed  Article  Google Scholar 

  47. 47.

    Tanabe Y et al (2002) Hemodynamic basis of the reduced oxygen uptake relative to work rate during incremental exercise in patients with chronic heart failure. Int J Cardiol. 83(1):57–62

    PubMed  Article  Google Scholar 

  48. 48.

    Swank AM et al (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail. 5(5):579–585

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Arena R et al (2007) Development of a ventilatory classification system in patients with heart failure. Circulation. 115(18):2410–2417

    PubMed  Article  Google Scholar 

  50. 50.

    Jaussaud J, Aimable L, Douard H (2011) The time for a new strong functional parameter in heart failure: the VE/VCO2 slope. Int J Cardiol. 147(2):189–190

    PubMed  Article  Google Scholar 

  51. 51.

    Osada N et al (1998) Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 31(3):577–582

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Myers J et al (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J. 156(6):1177–1183

    PubMed  Article  Google Scholar 

  53. 53.

    Righini FM et al (2019) Exercise physiology in pulmonary hypertension patients with and without congenital heart disease. Eur J Prev Cardiol. 26(1):86–93

    PubMed  Article  Google Scholar 

  54. 54.

    Stout KK et al (2019) 2018 AHA/ACC Guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 139(14):e637–e697

    PubMed  Google Scholar 

  55. 55.

    O'Connor CM et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 301(14):1439–1450

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Dua JS et al (2010) Exercise training in adults with congenital heart disease: feasibility and benefits. Int J Cardiol. 138(2):196–205

    PubMed  Article  Google Scholar 

  57. 57.

    van Dissel AC et al (2019) Safety and effectiveness of home-based, self-selected exercise training in symptomatic adults with congenital heart disease: a prospective, randomised, controlled trial. Int J Cardiol. 278:59–64

    PubMed  Article  Google Scholar 

  58. 58.

    McBride MG, Binder TJ, Paridon SM (2007) Safety and feasibility of inpatient exercise training in pediatric heart failure: a preliminary report. J Cardiopulm Rehabil Prev. 27(4):219–222

    PubMed  Article  Google Scholar 

  59. 59.

    Li X et al (2019) Exercise training in adults with congenital heart disease: a systematic review and meta-analysis. J Cardiopulm Rehabil Prev.

  60. 60.

    Cordina R, Celermajer DS, d'Udekem Y (2018) Lower limb exercise generates pulsatile flow into the pulmonary vascular bed in the setting of the Fontan circulation. Cardiol Young. 28(5):732–733

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danielle S. Burstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burstein, D.S., Menachem, J.N. & Opotowsky, A.R. Exercise testing for assessment of heart failure in adults with congenital heart disease. Heart Fail Rev 25, 647–655 (2020). https://doi.org/10.1007/s10741-019-09867-1

Download citation

Keywords

  • Adult congenital heart disease
  • Heart failure
  • Exercise testing