Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a common disorder generating high mortality and important morbidity prevalence, with a very limited medical treatment available. Studies have shown that the pathophysiological hallmark of this condition is an elevated left intra-atrial pressure (LAP), exertional dyspnea being its clinical manifestation. The increasing pressure from LA is not based on volume overload (such as in heart failure with reduced ejection fraction) but on a diastolic left ventricular (LV) dysfunction combined with an inter-atrial dyssynchrony mimicking a pseudo-pacemaker syndrome. In this review, we aimed to summarize current knowledge and discuss future directions of the newest interventional percutaneous therapies of HFpEF. Novel interventional approaches developed to counter these mechanisms are as follows: LA decompression (inter-atrial shunt devices), enhancement of LV compliance (LV expanders), and inter-atrial resynchronization therapy (LA permanent pacing). To date, inter-atrial shunt devices (IASD) are the most studied, being the only devices currently tested in a phase 3 trial. Recent data showed that IASD are feasible, safe, and have a short-term clinical benefit in HFpEF patients. LV expanders and LA pacing therapy present with a smaller clinical benefit compared with IASD, but they are safe, without any major adverse outcomes currently noted. With further development and improvement of these mechanism-specific devices, it will be interesting to determine in the future whether a complex intervention of multiple HFpEF device implantation will be safe and have further benefits in HFpEF patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259. https://doi.org/10.1056/NEJMoa052256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, Miller AB, Lopez-Sendon J, Teerlink JR, White M, McMurray JJ, Komajda M, McKelvie R, Ptaszynska A, Hetzel SJ, Massie BM, Carson PE (2010) Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial. Circulation 121(12):1393–1405. https://doi.org/10.1161/circulationaha.109.909614

    Article  PubMed  Google Scholar 

  3. 3.

    Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ (2018) Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 39(30):2780–2792. https://doi.org/10.1093/eurheartj/ehy301

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Roh J, Houstis N, Rosenzweig A (2017) Why don’t we have proven treatments for HFpEF? Circ Res 120(8):1243–1245. https://doi.org/10.1161/circresaha.116.310119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11(9):507–515. https://doi.org/10.1038/nrcardio.2014.83

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113(16):1966–1973. https://doi.org/10.1161/circulationaha.105.587519

    Article  PubMed  Google Scholar 

  8. 8.

    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350(19):1953–1959. https://doi.org/10.1056/NEJMoa032566

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschope C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16):2051–2060. https://doi.org/10.1161/circulationaha.107.716886

    Article  PubMed  Google Scholar 

  11. 11.

    Kulkarni SS, Sakaria AK, Mahajan SK, Shah KB (2012) Lutembacher’s syndrome. Journal of Cardiovascular Disease Research 3(2):179–181. https://doi.org/10.4103/0975-3583.95381

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Masutani S, Senzaki H (2011) Left ventricular function in adult patients with atrial septal defect: implication for development of heart failure after transcatheter closure. J Card Fail 17(11):957–963. https://doi.org/10.1016/j.cardfail.2011.07.003

    Article  PubMed  Google Scholar 

  13. 13.

    Ewert P, Berger F, Nagdyman N, Kretschmar O, Dittrich S, Abdul-Khaliq H, Lange P (2001) Masked left ventricular restriction in elderly patients with atrial septal defects: a contraindication for closure? Catheter Cardiovasc Interv 52(2):177–180

    CAS  Article  Google Scholar 

  14. 14.

    Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870. https://doi.org/10.1161/circulationaha.118.034646

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    De Rosa R, Piscione F, Schranz D, Citro R, Iesu S, Galasso G (2017) Transcatheter implantable devices to monitoring of elevated left atrial pressures in patients with chronic heart failure. Transl Med UniSa 17:19–21

    PubMed  Google Scholar 

  16. 16.

    Amat-Santos IJ, Nombela-Franco L, Garcia B, Tobar J, Rodes-Cabau J, San Roman JA (2015) The V-Wave device for the treatment of heart failure. Initial experience in Europe. Rev Esp Cardiol 68(9):808–810. https://doi.org/10.1016/j.rec.2015.04.015

    Article  PubMed  Google Scholar 

  17. 17.

    Amat-Santos IJ, Bergeron S, Bernier M, Allende R, Barbosa Ribeiro H, Urena M, Pibarot P, Verheye S, Keren G, Yaacoby M, Nitzan Y, Abraham WT, Rodes-Cabau J (2015) Left atrial decompression through unidirectional left-to-right interatrial shunt for the treatment of left heart failure: first-in-man experience with the V-Wave device. EuroIntervention 10(9):1127–1131. https://doi.org/10.4244/eijy14m05_07

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Rodes-Cabau J, Bernier M, Amat-Santos IJ, Ben Gal T, Nombela-Franco L, Garcia Del Blanco B, Kerner A, Bergeron S, Del Trigo M, Pibarot P, Shkurovich S, Eigler N, Abraham WT (2018) Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave system. J Am Coll Cardiol Intv 11(22):2300–2310. https://doi.org/10.1016/j.jcin.2018.07.001

    Article  Google Scholar 

  19. 19.

    Del Trigo M, Bergeron S, Bernier M, Amat-Santos IJ, Puri R, Campelo-Parada F, Altisent OA, Regueiro A, Eigler N, Rozenfeld E, Pibarot P, Abraham WT, Rodes-Cabau J (2016) Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of-principle cohort study. Lancet 387(10025):1290–1297. https://doi.org/10.1016/s0140-6736(16)00585-7

    Article  PubMed  Google Scholar 

  20. 20.

    ClinicalTrials.gov UNIoH REducing Lung Congestion Symptoms Using thE V-wavE Shunt in Advanced Heart Failure (RELIEVE-HF). https://clinicaltrials.gov/ct2/show/NCT03499236. Accessed 4 Dec 2018

  21. 21.

    Kaye D, Shah SJ, Borlaug BA, Gustafsson F, Komtebedde J, Kubo S, Magnin C, Maurer MS, Feldman T, Burkhoff D (2014) Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail 20(3):212–221. https://doi.org/10.1016/j.cardfail.2014.01.005

    Article  PubMed  Google Scholar 

  22. 22.

    Sondergaard L, Reddy V, Kaye D, Malek F, Walton A, Mates M, Franzen O, Neuzil P, Ihlemann N, Gustafsson F (2014) Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail 16(7):796–801. https://doi.org/10.1002/ejhf.111

    Article  PubMed  Google Scholar 

  23. 23.

    Hasenfuss G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, Malek F, Van der Heyden J, Lang I, Petrie MC, Cleland JG, Leon M, Kaye DM (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387(10025):1298–1304. https://doi.org/10.1016/s0140-6736(16)00704-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kaye DM, Hasenfuss G, Neuzil P, Post MC, Doughty R, Trochu JN, Kolodziej A, Westenfeld R, Penicka M, Rosenberg M, Walton A, Muller D, Walters D, Hausleiter J, Raake P, Petrie MC, Bergmann M, Jondeau G, Feldman T, Veldhuisen DJ, Ponikowski P, Silvestry FE, Burkhoff D, Hayward C (2016) One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail 9(12). https://doi.org/10.1161/circheartfailure.116.003662

  25. 25.

    Feldman T, Mauri L, Kahwash R, Litwin S, Ricciardi MJ, van der Harst P, Penicka M, Fail PS, Kaye DM, Petrie MC, Basuray A, Hummel SL, Forde-McLean R, Nielsen CD, Lilly S, Massaro JM, Burkhoff D, Shah SJ (2018) Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in patients With Heart Failure]): a phase 2, randomized, sham-controlled trial. Circulation 137(4):364–375. https://doi.org/10.1161/circulationaha.117.032094

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Health UNIo A study to evaluate the Corvia Medical, Inc. IASD® System II to reduce elevated left atrial pressure in patients with heart failure https://clinicaltrials.gov/ct2/show/NCT03088033. Accessed 4 Dec 2018

  27. 27.

    Health.ClinicalTrials.gov UNIo A study to evaluate the Corvia Medical, Inc. IASD® System II to REDUCE elevated left atrial pressure in patients with heart failure with reduced ejection fraction. https://clinicaltrials.gov/ct2/show/NCT03093961. Accessed 4 Dec 2018

  28. 28.

    Patel MB, Samuel BP, Girgis RE, Parlmer MA, Vettukattil JJ (2015) Implantable atrial flow regulator for severe, irreversible pulmonary arterial hypertension. EuroIntervention 11(6):706–709. https://doi.org/10.4244/eijy15m07_08

    Article  PubMed  Google Scholar 

  29. 29.

    Gupta A, Bailey SR (2018) Update on devices for diastolic dysfunction: options for a no option condition? Curr Cardiol Rep 20(10):85. https://doi.org/10.1007/s11886-018-1027-2

    Article  PubMed  Google Scholar 

  30. 30.

    Rajeshkumar R, Pavithran S, Sivakumar K, Vettukattil JJ (2017) Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension. Catheter Cardiovasc Interv 90(7):1145–1153. https://doi.org/10.1002/ccd.27233

    Article  PubMed  Google Scholar 

  31. 31.

    Health.ClinicalTrials.gov UNIo The prelieve trial- pilot study to assess safety and efficacy of a novel atrial flow regulator (AFR) in heart failure patients (PRELIEVE). NCT03030274 https://clinicaltrials.gov/ct2/show/NCT03030274. Accessed 3 Dec 2018

  32. 32.

    T S (2010) Reversing heart failure: diastolic recoil in a proposed cardiac support device

    Google Scholar 

  33. 33.

    M K Heart Failure With Preserved EFx: Corassist. In: TCT 2012, San Francisco (2012)

  34. 34.

    A E (2013) First in man implantation of intra-ventricular device for diastolic heart failure. TCT 2013, San Francisco

    Google Scholar 

  35. 35.

    Health.ClinicalTrials.gov UNIo (2015) CORolla® TAA for heart failure with preserved ejection fraction (HFpEF) and diastolic dysfunction (DD). https://clinicaltrials.gov/ct2/show/NCT02499601. Accessed 3 Dec 2018

  36. 36.

    TCT-481: Diastolic heart failure – innovative extra and intra ventricular solutions (2011) J Am Coll Cardiol 58 (20 Supplement):B131. https://doi.org/10.1016/j.jacc.2011.10.492

  37. 37.

    Morris DA, Gailani M, Vaz Perez A, Blaschke F, Dietz R, Haverkamp W, Ozcelik C (2011) Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr 24(6):651–662. https://doi.org/10.1016/j.echo.2011.02.004

    Article  PubMed  Google Scholar 

  38. 38.

    Maass AH, Van Gelder IC (2012) Atrial resynchronization therapy: a new concept for treatment of heart failure with preserved ejection fraction and prevention of atrial fibrillation? Eur J Heart Fail 14(3):227–229. https://doi.org/10.1093/eurjhf/hfs014

    Article  PubMed  Google Scholar 

  39. 39.

    Daubert C, Leclercq C, Le Breton H, Gras D, Pavin D, Pouvreau Y, Van Verooij P, Bakels N, Mabo P (1997) Permanent left atrial pacing with a specifically designed coronary sinus lead. Pacing Clin Electrophysiol 20(11):2755–2764

    CAS  Article  Google Scholar 

  40. 40.

    Sanchis L, Vannini L, Gabrielli L, Duchateau N, Falces C, Andrea R, Bijnens B, Sitges M (2015) Interatrial Dyssynchrony may contribute to heart failure symptoms in patients with preserved ejection fraction. Echocardiography 32(11):1655–1661. https://doi.org/10.1111/echo.12927

    Article  PubMed  Google Scholar 

  41. 41.

    Liu S, Guan Z, Zheng X, Meng P, Wang Y, Li Y, Zhang Y, Yang J, Jia D, Ma C (2018) Impaired left atrial systolic function and inter-atrial dyssynchrony may contribute to symptoms of heart failure with preserved left ventricular ejection fraction: a comprehensive assessment by echocardiography. Int J Cardiol 257:177–181. https://doi.org/10.1016/j.ijcard.2017.12.042

    Article  PubMed  Google Scholar 

  42. 42.

    Eicher JC, Laurent G, Mathe A, Barthez O, Bertaux G, Philip JL, Dorian P, Wolf JE (2012) Atrial dyssynchrony syndrome: an overlooked phenomenon and a potential cause of ‘diastolic’ heart failure. Eur J Heart Fail 14(3):248–258. https://doi.org/10.1093/eurjhf/hfr169

    Article  PubMed  Google Scholar 

  43. 43.

    Laurent G, Eicher JC, Mathe A, Bertaux G, Barthez O, Debin R, Billard C, Philip JL, Wolf JE (2013) Permanent left atrial pacing therapy may improve symptoms in heart failure patients with preserved ejection fraction and atrial dyssynchrony: a pilot study prior to a national clinical research programme. Eur J Heart Fail 15(1):85–93. https://doi.org/10.1093/eurjhf/hfs150

    Article  PubMed  Google Scholar 

  44. 44.

    Kleemann T (2015) Cardiac contractility modulation. A new form of therapy for patients with heart failure and narrow QRS complex? Herz 40(7):945–951. https://doi.org/10.1007/s00059-015-4362-8

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Abi-Samra F, Gutterman D (2016) Cardiac contractility modulation: a novel approach for the treatment of heart failure. Heart Fail Rev 21(6):645–660. https://doi.org/10.1007/s10741-016-9571-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M, Agricola E, Maggi F, Buchmayr G, Moretti G, Mika Y, Ben-Haim SA, Wolzt M, Stix G, Schmidinger H (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427

    Article  Google Scholar 

  47. 47.

    Tschope C, Van Linthout S, Spillmann F, Klein O, Biewener S, Remppis A, Gutterman D, Linke WA, Pieske B, Hamdani N, Roser M (2016) Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol 203:1061–1066. https://doi.org/10.1016/j.ijcard.2015.10.208

    Article  PubMed  Google Scholar 

  48. 48.

    Borggrefe M, Mann DL (2018) Cardiac contractility modulation in 2018. Circulation 138(24):2738–2740. https://doi.org/10.1161/circulationaha.118.036460

    Article  PubMed  Google Scholar 

  49. 49.

    Health.ClinicalTrials.gov UNIo (2017) CCM in heart failure with preserved ejection fraction (CCM-HFpEF). https://clinicaltrials.gov/ct2/show/NCT03240237?titles=CCM+HFPEF&rank=1. Accessed 3 Dec 2018

  50. 50.

    Yap SC (2015) Atrial fibrillation and stroke after atrial septal defect closure. Is earlier closure warranted? Heart 101(9):661–662. https://doi.org/10.1136/heartjnl-2015-307554

    Article  PubMed  Google Scholar 

  51. 51.

    Mojadidi MK, Zaman MO, Elgendy IY, Mahmoud AN, Patel NK, Agarwal N, Tobis JM, Meier B (2018) Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol 71(9):1035–1043. https://doi.org/10.1016/j.jacc.2017.12.059

    Article  PubMed  Google Scholar 

  52. 52.

    McCambridge J, Witton J, Elbourne DR (2014) Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol 67(3):267–277. https://doi.org/10.1016/j.jclinepi.2013.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Burkhoff D, Maurer MS, Joseph SM, Rogers JG, Birati EY, Rame JE, Shah SJ (2015) Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail 3(4):275–282. https://doi.org/10.1016/j.jchf.2014.10.011

    Article  PubMed  Google Scholar 

  54. 54.

    Granegger M, Dave H, Knirsch W, Thamsen B, Schweiger M, Hubler M (2018) A valveless pulsatile pump for the treatment of heart failure with preserved ejection fraction: a simulation study. Cardiovasc Eng Technol 10:69–79. https://doi.org/10.1007/s13239-018-00398-8

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Romanian Academy of Medical Sciences and European Regional Development Fund, MySMIS 107124: Funding Contract 2/Axa 1/31.07.2017/ 107124 SMIS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Simion.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burlacu, A., Simion, P., Nistor, I. et al. Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review. Heart Fail Rev 24, 793–803 (2019). https://doi.org/10.1007/s10741-019-09787-0

Download citation

Keywords

  • HFpEF
  • Interventions
  • Therapy
  • Devices