Heart Failure Reviews

, Volume 20, Issue 3, pp 283–290 | Cite as

Mineralocorticoid receptor antagonists as diuretics: Can congestive heart failure learn from liver failure?

  • Amirali Masoumi
  • Fernando Ortiz
  • Jai Radhakrishnan
  • Robert W. Schrier
  • Paolo C. Colombo


Despite significant improvements in diagnosis, understanding the pathophysiology and management of the patients with acute decompensated heart failure (ADHF), diuretic resistance, yet to be clearly defined, is a major hurdle. Secondary hyperaldosteronism is a pivotal factor in pathogenesis of sodium retention, refractory congestion in heart failure (HF) as well as diuretic resistance. In patients with decompensated cirrhosis who suffer from ascites, similar pathophysiological complications have been recognized. Administration of natriuretic doses of mineralocorticoid receptor antagonists (MRAs) has been well established in management of cirrhotic patients. However, this strategy in patients with ADHF has not been well studied. This article will discuss the potential use of natriuretic doses of MRAs to overcome the secondary hyperaldosteronism as an alternative diuretic regimen in patients with HF.


Heart failure Cirrhosis Hyperaldosteronism Mineralocorticoid receptor antagonism Refractory congestion 


Conflict of interest

The authors do not have any conflict of interests.


  1. 1.
    Lloyd-Jones D et al (2009) Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):480–486PubMedCrossRefGoogle Scholar
  2. 2.
    Ambrosy AP et al (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133PubMedCrossRefGoogle Scholar
  3. 3.
    Gheorghiade M et al (2005) Acute heart failure syndromes: current state and framework for future research. Circulation 112(25):3958–3968PubMedCrossRefGoogle Scholar
  4. 4.
    Felker GM et al (2003) The problem of decompensated heart failure: nomenclature, classification, and risk stratification. Am Heart J 145(2 Suppl.):S18–S25PubMedCrossRefGoogle Scholar
  5. 5.
    Fonarow GC et al (2007) Influence of a performance-improvement initiative on quality of care for patients hospitalized with heart failure: results of the organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF). Arch Intern Med 167(14):1493–1502PubMedCrossRefGoogle Scholar
  6. 6.
    Gheorghiade M et al (2006) Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med 119(12 Suppl. 1):S3–S10PubMedCrossRefGoogle Scholar
  7. 7.
    Fonarow GC et al (2007) Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 153(6):1021–1028PubMedCrossRefGoogle Scholar
  8. 8.
    Allen LA et al (2008) Improvements in signs and symptoms during hospitalization for acute heart failure follow different patterns and depend on the measurement scales used: an international, prospective registry to evaluate the evolution of measures of disease severity in acute heart failure (MEASURE-AHF). J Card Fail 14(9):777–784PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Lucas C et al (2000) Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J 140(6):840–847PubMedCrossRefGoogle Scholar
  10. 10.
    Gheorghiade M et al (2004) Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 291(16):1963–1971PubMedCrossRefGoogle Scholar
  11. 11.
    Nohria A et al (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51(13):1268–1274PubMedCrossRefGoogle Scholar
  12. 12.
    Damman K et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53(7):582–588PubMedCrossRefGoogle Scholar
  13. 13.
    Aronson D, Burger AJ (2003) Neurohormonal prediction of mortality following admission for decompensated heart failure. Am J Cardiol 91(2):245–248PubMedCrossRefGoogle Scholar
  14. 14.
    Pitt B et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717PubMedCrossRefGoogle Scholar
  15. 15.
    The RALES Investigators (1996) Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol 78(8):902–907Google Scholar
  16. 16.
    Schmidt BM et al (2006) Rapid nongenomic effects of aldosterone on the renal vasculature in humans. Hypertension 47(4):650–655PubMedCrossRefGoogle Scholar
  17. 17.
    Farquharson CA, Struthers AD (2000) Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 101(6):594–597PubMedCrossRefGoogle Scholar
  18. 18.
    Struthers A, Krum H, Williams GH (2008) A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol 31(4):153–158PubMedCrossRefGoogle Scholar
  19. 19.
    Schrier RW (2010) Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol 6(2):61PubMedCrossRefGoogle Scholar
  20. 20.
    Sowers JR, Whaley-Connell A, Epstein M (2009) Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 150(11):776–783PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gross E et al (2005) Effect of spironolactone on blood pressure and the renin–angiotensin–aldosterone system in oligo-anuric hemodialysis patients. Am J Kidney Dis 46(1):94–101PubMedCrossRefGoogle Scholar
  22. 22.
    Pitt B et al (2008) Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation 118(16):1643–1650PubMedCrossRefGoogle Scholar
  23. 23.
    Chai W et al (2005) Nongenomic effects of aldosterone in the human heart: interaction with angiotensin II. Hypertension 46(4):701–706PubMedCrossRefGoogle Scholar
  24. 24.
    Schrier RW et al (1988) Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8(5):1151–1157PubMedCrossRefGoogle Scholar
  25. 25.
    Vallance P, Moncada S (1991) Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet 337(8744):776–778PubMedCrossRefGoogle Scholar
  26. 26.
    Iwakiri Y, Groszmann RJ (2006) The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43(2 Suppl. 1):S121–S131PubMedCrossRefGoogle Scholar
  27. 27.
    Guarner C et al (1986) Renal prostaglandins in cirrhosis of the liver. Clin Sci (Lond) 70(5):477–484Google Scholar
  28. 28.
    La Villa G et al (1992) Mineralocorticoid escape in patients with compensated cirrhosis and portal hypertension. Gastroenterology 102(6):2114–2119PubMedGoogle Scholar
  29. 29.
    Gines P et al (1997) Pathogenesis of ascites in cirrhosis. Semin Liver Dis 17(3):175–189PubMedCrossRefGoogle Scholar
  30. 30.
    Gines P et al (2005) Ascites and renal dysfunction in liver disease: pathogenesis, diagnosis, and treatment. 2nd edn. Wiley, MaldenGoogle Scholar
  31. 31.
    Henriksen JH et al (1992) Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor. Hepatology 16(5):1163–1170PubMedCrossRefGoogle Scholar
  32. 32.
    Arroyo V et al (1981) Plasma renin activity and urinary sodium excretion as prognostic indicators in nonazotemic cirrhosis with ascites. Ann Intern Med 94(2):198–201PubMedCrossRefGoogle Scholar
  33. 33.
    Trevisani F et al (1989) Circadian variation in renal sodium and potassium handling in cirrhosis. The role of aldosterone, cortisol, sympathoadrenergic tone, and intratubular factors. Gastroenterology 96(4):1187–1198PubMedGoogle Scholar
  34. 34.
    Henriksen JH et al (1998) The sympathetic nervous system in liver disease. J Hepatol 29(2):328–341PubMedCrossRefGoogle Scholar
  35. 35.
    Esler M, Kaye D (1998) Increased sympathetic nervous system activity and its therapeutic reduction in arterial hypertension, portal hypertension and heart failure. J Auton Nerv Syst 72(2–3):210–219PubMedCrossRefGoogle Scholar
  36. 36.
    Schrier RW (2006) Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol 47(1):1–8PubMedCrossRefGoogle Scholar
  37. 37.
    Henry JP, Gauer OH, Reeves JL (1956) Evidence of the atrial location of receptors influencing urine flow. Circ Res 4(1):85–90PubMedCrossRefGoogle Scholar
  38. 38.
    Linden RJ, Kappagoda CT (1982) Atrial receptors. Monogr Physiol Soc 39:1–363PubMedGoogle Scholar
  39. 39.
    Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77(4):721–730PubMedCrossRefGoogle Scholar
  40. 40.
    Schrier RW (1990) Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med 113(2):155–159PubMedCrossRefGoogle Scholar
  41. 41.
    Schrier RW (2006) Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med 119(7 Suppl. 1):S47–S53PubMedCrossRefGoogle Scholar
  42. 42.
    Schrier RW (2007) Decreased effective blood volume in edematous disorders: what does this mean? J Am Soc Nephrol 18(7):2028–2031PubMedCrossRefGoogle Scholar
  43. 43.
    Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585PubMedCrossRefGoogle Scholar
  44. 44.
    Fogel MR et al (1981) Diuresis in the ascitic patient: a randomized controlled trial of three regimens. J Clin Gastroenterol 3(Suppl. 1):73–80PubMedCrossRefGoogle Scholar
  45. 45.
    Perez-Ayuso RM et al (1983) Randomized comparative study of efficacy of furosemide versus spironolactone in nonazotemic cirrhosis with ascites. Relationship between the diuretic response and the activity of the renin–aldosterone system. Gastroenterology 84(5 Pt 1):961–968PubMedGoogle Scholar
  46. 46.
    Pinzani M et al (1987) Altered furosemide pharmacokinetics in chronic alcoholic liver disease with ascites contributes to diuretic resistance. Gastroenterology 92(2):294–298PubMedGoogle Scholar
  47. 47.
    Fernandez-Llama P et al (2005) Sodium retention in cirrhotic rats is associated with increased renal abundance of sodium transporter proteins. Kidney Int 67(2):622–630PubMedCrossRefGoogle Scholar
  48. 48.
    Runyon BA (2013) Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology 57(4):1651–1653PubMedCrossRefGoogle Scholar
  49. 49.
    Gines P, Schrier RW (2009) Renal failure in cirrhosis. N Engl J Med 361(13):1279–1290PubMedCrossRefGoogle Scholar
  50. 50.
    Pitt B (2008) Aldosterone blockade in patients with chronic heart failure. Cardiol Clin 26(1):15–21PubMedCrossRefGoogle Scholar
  51. 51.
    McKelvie RS et al (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100(10):1056–1064PubMedCrossRefGoogle Scholar
  52. 52.
    Vittorio TJ et al (2007) Comparison of high- versus low-tissue affinity ACE-inhibitor treatment on circulating aldosterone levels in patients with chronic heart failure. J Renin Angiotensin Aldosterone Syst 8(4):200–204PubMedCrossRefGoogle Scholar
  53. 53.
    Pitt B et al (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14):1309–1321PubMedCrossRefGoogle Scholar
  54. 54.
    Zannad F et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364(1):11–21PubMedCrossRefGoogle Scholar
  55. 55.
    Pitt B et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370(15):1383–1392PubMedCrossRefGoogle Scholar
  56. 56.
    Braunwald E, Plauth WH Jr, Morrow AG (1965) A method for the detection and quantification of impaired sodium excretion. Results of an oral sodium tolerance test in normal subjects and in patients with heart disease. Circulation 32:223–231PubMedCrossRefGoogle Scholar
  57. 57.
    Hensen J et al (1991) Aldosterone in congestive heart failure: analysis of determinants and role in sodium retention. Am J Nephrol 11(6):441–446PubMedCrossRefGoogle Scholar
  58. 58.
    van Vliet AA et al (1993) Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin-converting enzyme inhibitor. Am J Cardiol 71(3):21a–28aPubMedCrossRefGoogle Scholar
  59. 59.
    Ferreira JP et al (2014) Mineralocorticoid receptor antagonism in acutely decompensated chronic heart failure. Eur J Intern Med 25(1):67–72PubMedCrossRefGoogle Scholar
  60. 60.
    Chamsi-Pasha MA et al (2014) Utilization pattern of mineralocorticoid receptor antagonists in contemporary patients hospitalized with acute decompensated heart failure: a single-center experience. J Card Fail 20(4):229–235PubMedCrossRefGoogle Scholar
  61. 61.
    Juurlink DN et al (2004) Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med 351(6):543–551PubMedCrossRefGoogle Scholar
  62. 62.
    Wei L et al (2010) Spironolactone use and renal toxicity: population based longitudinal analysis. BMJ 340:c1768PubMedCrossRefGoogle Scholar
  63. 63.
    Rossignol P et al (2014) Incidence, determinants, and prognostic significance of hyperkalemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Circ Heart Fail 7(1):51–58PubMedCrossRefGoogle Scholar
  64. 64.
    Eschalier R et al (2013) Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And Survival Study in Heart Failure). J Am Coll Cardiol 62(17):1585–1593PubMedCrossRefGoogle Scholar
  65. 65.
    Hernandez AF et al (2012) Associations between aldosterone antagonist therapy and risks of mortality and readmission among patients with heart failure and reduced ejection fraction. JAMA 308(20):2097–2107PubMedCrossRefGoogle Scholar
  66. 66.
    Yancy CW et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240–e327PubMedCrossRefGoogle Scholar
  67. 67.
    Schrier RW, Gheorghiade M (2011) Challenge of rehospitalizations for heart failure: potential of natriuretic doses of mineralocorticoid receptor antagonists. Am Heart J 161(2):221–223PubMedCrossRefGoogle Scholar
  68. 68.
    Ezekowitz JA, McAlister FA (2009) Aldosterone blockade and left ventricular dysfunction: a systematic review of randomized clinical trials. Eur Heart J 30(4):469–477PubMedCrossRefGoogle Scholar
  69. 69.
    Jeunemaitre X et al (1987) Efficacy and tolerance of spironolactone in essential hypertension. Am J Cardiol 60(10):820–825PubMedCrossRefGoogle Scholar
  70. 70.
    Garthwaite SM, McMahon EG (2004) The evolution of aldosterone antagonists. Mol Cell Endocrinol 217(1–2):27–31PubMedCrossRefGoogle Scholar
  71. 71.
    Dimitriadis G, Papadopoulos V, Mimidis K (2011) Eplerenone reverses spironolactone-induced painful gynaecomastia in cirrhotics. Hepatol Int 5(2):738–739PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Albaghdadi M, Gheorghiade M, Pitt B (2011) Mineralocorticoid receptor antagonism: therapeutic potential in acute heart failure syndromes. Eur Heart J 32(21):2626–2633PubMedCrossRefGoogle Scholar
  73. 73.
    Bansal S, Lindenfeld J, Schrier RW (2009) Sodium retention in heart failure and cirrhosis: potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail 2(4):370–376Google Scholar
  74. 74.
    Schrier RW, Masoumi A, Elhassan E (2010) Aldosterone: role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin J Am Soc Nephrol 5(6):1132–1140Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amirali Masoumi
    • 1
  • Fernando Ortiz
    • 2
  • Jai Radhakrishnan
    • 3
  • Robert W. Schrier
    • 4
  • Paolo C. Colombo
    • 1
  1. 1.Division of Cardiology, New York-Presbyterian HospitalColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.Department of MedicineColumbia University College of Physicians and SurgeonsNew YorkUSA
  3. 3.Division of Nephrology, New York-Presbyterian HospitalColumbia University College of Physicians and SurgeonsNew YorkUSA
  4. 4.Division of NephrologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations