Heart Failure Reviews

, Volume 20, Issue 3, pp 273–282 | Cite as

Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair



Thyroid hormone (TH) appears to have a critical role in cardiac repair after injury beyond its role in development and metabolism homeostasis. This unique action is due to the fact that TH effect on the heart is shown to be differentiated depending on its administration on injured or healthy myocardium. Thus, TH can limit ischemia–reperfusion injury via a fine balance between pro-apoptotic and pro-survival signaling pathways. This response is thyroid hormone receptor (TRα1) dependent. Furthermore, an interaction between stress-induced growth kinase signaling and TRα1 is shown to occur and determine postischemic remodeling and cardiac recovery depending on the availability of TH. This new evidence is consistent with clinical observations showing the cardioprotective effect of TH treatment in cardiac surgery, transplantation and heart failure. TH and/or thyroid analogs may be novel agents in treating heart diseases.


Myocardial ischemia Heart failure Cardiac transplantation Thyroid hormone Thyroid hormone receptor α1 



The described work was partly supported by Greek Secretariat of Research and Development (ESPA SYNERGASIA 09ΣΥΝ-21-965).

Conflict of interest

Dr. Constantinos Pantos and Dr. Iordanis Mourouzis have no conflict of interest or financial ties to disclose.


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American heart association. Circulation 127(1):143–152. doi: 10.1161/CIR.0b013e318282ab8f PubMedCrossRefGoogle Scholar
  2. 2.
    Babu GG, Walker JM, Yellon DM, Hausenloy DJ (2011) Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J 32(1):23–31. doi: 10.1093/eurheartj/ehq393 PubMedCrossRefGoogle Scholar
  3. 3.
    Lee CH, Ju MH, Kim JB, Chung CH, Jung SH, Choo SJ, Lee JW (2014) Myocardial injury following aortic valve replacement for severe aortic stenosis: risk factor of postoperative myocardial injury and its impact on long-term outcomes. Korean J Thorac Cardiovasc Surg 47(3):233–239. doi: 10.5090/kjtcs.2014.47.3.233 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Springeling T, Kirschbaum SW, Rossi A, Baks T, Karamermer Y, Schulz C, Ouhlous M, Duncker DJ, Moelker A, Krestin GP, Serruys PW, de Feyter P, van Geuns RJ (2012) Late cardiac remodeling after primary percutaneous coronary intervention-five-year cardiac magnetic resonance imaging follow-up. Circ J 77(1):81–88PubMedCrossRefGoogle Scholar
  5. 5.
    Alameddine AK, Visintainer P, Normand SL, Wolf RE, Alameddine YA (2014) Cancer rates in adults after cardiac interventions: a preliminary observational report. Am J Clin Oncol. doi: 10.1097/COC.0000000000000120 PubMedGoogle Scholar
  6. 6.
    Novitzky D, Cooper DK, Rosendale JD, Kauffman HM (2006) Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation 82(11):1396–1401. doi: 10.1097/01.tp.0000237195.12342.f1 PubMedCrossRefGoogle Scholar
  7. 7.
    Ioannidis JP, Karvouni E, Katritsis DG (2003) Mortality risk conferred by small elevations of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 42(8):1406–1411PubMedCrossRefGoogle Scholar
  8. 8.
    Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106(18):2351–2357PubMedCrossRefGoogle Scholar
  9. 9.
    Mourouzis I, Politi E, Pantos C (2013) Thyroid hormone and tissue repair: new tricks for an old hormone? J Thyroid Res 2013:312104. doi: 10.1155/2013/312104 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Pantos C, Mourouzis I, Cokkinos DV (2012) Thyroid hormone and cardiac repair/regeneration: from Prometheus myth to reality? Can J Physiol Pharmacol 90(8):977–987. doi: 10.1139/y2012-031 PubMedCrossRefGoogle Scholar
  11. 11.
    De Groot LJ (2006) Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit Care Clin 22(1):57–86. doi: 10.1016/j.ccc.2005.10.001 PubMedCrossRefGoogle Scholar
  12. 12.
    Lazzeri C, Sori A, Picariello C, Chiostri M, Gensini GF, Valente S (2012) Nonthyroidal illness syndrome in ST-elevation myocardial infarction treated with mechanical revascularization. Int J Cardiol 158(1):103–104. doi: 10.1016/j.ijcard.2012.03.100 PubMedCrossRefGoogle Scholar
  13. 13.
    Stathatos N, Levetan C, Burman KD, Wartofsky L (2001) The controversy of the treatment of critically ill patients with thyroid hormone. Best Pract Res Clin Endocrinol Metab 15(4):465–478. doi: 10.1053/beem.2001.0164 PubMedCrossRefGoogle Scholar
  14. 14.
    Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi: 10.1530/EJE-11-0062 PubMedCrossRefGoogle Scholar
  15. 15.
    Chuang CP, Jong YS, Wu CY, Lo HM (2014) Impact of triiodothyronine and N-terminal pro-B-type natriuretic peptide on the long-term survival of critically ill patients with acute heart failure. Am J Cardiol 113(5):845–850. doi: 10.1016/j.amjcard.2013.11.039 PubMedCrossRefGoogle Scholar
  16. 16.
    Pingitore A, Landi P, Taddei MC, Ripoli A, L’Abbate A, Iervasi G (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118(2):132–136PubMedCrossRefGoogle Scholar
  17. 17.
    Fontana M, Passino C, Poletti R, Zyw L, Prontera C, Scarlattini M, Clerico A, Emdin M, Iervasi G (2012) Low triiodothyronine and exercise capacity in heart failure. Int J Cardiol 154(2):153–157. doi: 10.1016/j.ijcard.2010.09.002 PubMedCrossRefGoogle Scholar
  18. 18.
    Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, Mavrogeni S, Manginas A, Cokkinos DV (2007) Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications. Eur J Endocrinol 157(4):515–520PubMedCrossRefGoogle Scholar
  19. 19.
    Selvaraj S, Klein I, Danzi S, Akhter N, Bonow RO, Shah SJ (2012) Association of serum triiodothyronine with B-type natriuretic peptide and severe left ventricular diastolic dysfunction in heart failure with preserved ejection fraction. Am J Cardiol 110(2):234–239. doi: 10.1016/j.amjcard.2012.02.068 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kaptein EM, Sanchez A, Beale E, Chan LS (2010) Clinical review: thyroid hormone therapy for postoperative nonthyroidal illnesses: a systematic review and synthesis. J Clin Endocrinol Metab 95(10):4526–4534PubMedCrossRefGoogle Scholar
  21. 21.
    Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose–insulin–potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114(1 Suppl):I245–I250PubMedGoogle Scholar
  22. 22.
    Sirlak M, Yazicioglu L, Inan MB, Eryilmaz S, Tasoz R, Aral A, Ozyurda U (2004) Oral thyroid hormone pretreatment in left ventricular dysfunction. Eur J Cardiothorac Surg 26(4):720–725PubMedCrossRefGoogle Scholar
  23. 23.
    Macdonald PS, Aneman A, Bhonagiri D, Jones D, O’Callaghan G, Silvester W, Watson A, Dobb G (2012) A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit Care Med 40(5):1635–1644. doi: 10.1097/CCM.0b013e3182416ee7 PubMedCrossRefGoogle Scholar
  24. 24.
    Jeevanandam V (1997) Triiodothyronine: spectrum of use in heart transplantation. Thyroid 7(1):139–145PubMedCrossRefGoogle Scholar
  25. 25.
    Novitzky D, Cooper DK (2014) Thyroid hormones and the stunned myocardium. J Endocrinol. doi: 10.1530/JOE-14-0389 PubMedGoogle Scholar
  26. 26.
    Novitzky D, Mi Z, Sun Q, Collins J, Cooper DK (2014) Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective review. Transplantation 98(10):1119–1127. doi: 10.1097/TP.0000000000000187
  27. 27.
    Hamilton MA, Stevenson LW, Fonarow GC, Steimle A, Goldhaber JI, Child JS, Chopra IJ, Moriguchi JD, Hage A (1998) Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81(4):443–447PubMedCrossRefGoogle Scholar
  28. 28.
    Moruzzi P, Doria E, Agostoni PG (1996) Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101(5):461–467PubMedCrossRefGoogle Scholar
  29. 29.
    Moruzzi P, Doria E, Agostoni PG, Capacchione V, Sganzerla P (1994) Usefulness of L-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73(5):374–378PubMedCrossRefGoogle Scholar
  30. 30.
    Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L’Abbate A, Mariotti R, Iervasi G (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93(4):1351–1358PubMedCrossRefGoogle Scholar
  31. 31.
    Pantos C, Mourouzis I, Cokkinos DV (2010) Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol 52(3–4):157–165PubMedCrossRefGoogle Scholar
  32. 32.
    Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118(2):277–294PubMedCrossRefGoogle Scholar
  33. 33.
    Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Moraitis P, Tzeis S, Paizis I, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478(1):53–60PubMedCrossRefGoogle Scholar
  34. 34.
    Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, Saranteas T, Xinaris C, Cokkinos DV (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38(5):308–313. doi: 10.1055/s-2006-925404 PubMedCrossRefGoogle Scholar
  35. 35.
    Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242(1–2):173–180PubMedCrossRefGoogle Scholar
  36. 36.
    Pantos C, Mourouzis I, Cokkinos DV (2011) New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail Rev 16(1):79–96. doi: 10.1007/s10741-010-9185-3 PubMedCrossRefGoogle Scholar
  37. 37.
    Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV (2011) Acute T3 treatment protects the heart against ischemia–reperfusion injury via TRα1 receptor. Mol Cell Biochem 353(1-2):235–241. doi: 10.1007/s11010-011-0791-8 PubMedCrossRefGoogle Scholar
  38. 38.
    Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104(1):69–77PubMedCrossRefGoogle Scholar
  39. 39.
    Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, Brown JH, Suarez JA, Feinstein S, Diaz-Juarez J, Dillmann WH (2014) In vivo selective expression of thyroid hormone receptor aplha1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 307(3):R340–R346. doi: 10.1152/ajpregu.00449.2013 PubMedCrossRefGoogle Scholar
  40. 40.
    Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM (2008) Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44(1):180–187PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L (2014) Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. doi: 10.1210/en.2014-1106 PubMedGoogle Scholar
  42. 42.
    Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12(4):325–329PubMedCrossRefGoogle Scholar
  43. 43.
    Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Tzeis SM, Carageorgiou HC, Varonos DD, Cokkinos DV (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170(1):207–215PubMedCrossRefGoogle Scholar
  44. 44.
    Kapoor MC (2014) Phenylephrine in cardiac surgery: will it have a place? Ann Card Anaesth 17(3):209–210PubMedCrossRefGoogle Scholar
  45. 45.
    Mourouzis I, Saranteas T, Ligeret H, Portal C, Perimenis P, Pantos C (2014) Phenylephrine postconditioning increases myocardial injury: are alpha-1 sympathomimetic agonist cardioprotective? Ann Card Anaesth 17(3):200–209. doi: 10.4103/0971-9784.135850 PubMedCrossRefGoogle Scholar
  46. 46.
    Pantos C, Mourouzis I, Tzeis S, Moraitis P, Malliopoulou V, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos D (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460(2–3):155–161PubMedCrossRefGoogle Scholar
  47. 47.
    Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89(12):1191–1198PubMedCrossRefGoogle Scholar
  48. 48.
    Sato T, Sato H, Oguchi T, Fukushima H, Carvalho G, Lattermann R, Matsukawa T, Schricker T (2014) Insulin preconditioning elevates p-Akt and cardiac contractility after reperfusion in the isolated ischemic rat heart. Biomed Res Int 2014:536510. doi: 10.1155/2014/536510 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Pantos C, Mourouzis I, Cokkinos DV (2010) New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail Rev 16(1):79–96CrossRefGoogle Scholar
  50. 50.
    Pantos C, Mourouzis I, Cokkinos DV (2010) Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev 15(2):143–154PubMedCrossRefGoogle Scholar
  51. 51.
    Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D, Cokkinos DV, Singh J, Pantos C (2010) Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345(1–2):161–169PubMedCrossRefGoogle Scholar
  52. 52.
    Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, Tentolouris N, Pantos C (2013) Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism 62(10):1387–1393. doi: 10.1016/j.metabol.2013.05.008 PubMedCrossRefGoogle Scholar
  53. 53.
    Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV, Pantos C (2012) Dose dependent effects of thyroid hormone on post-ischaemic cardiac performance: potential involvement of Akt and ERK signaling. Mol Cell Biochem 363(1–2):235–243PubMedCrossRefGoogle Scholar
  54. 54.
    Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32(2):333–339PubMedCrossRefGoogle Scholar
  55. 55.
    Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103(4):308–318PubMedCrossRefGoogle Scholar
  56. 56.
    Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60(3):49–56PubMedGoogle Scholar
  57. 57.
    MaMa L, Kerr BA, Naga Prasad SV, Byzova TV, Somanath PR (2014) Differential effects of Akt1 signaling on short- versus long-term consequences of myocardial infarction and reperfusion injury. Lab Invest. doi: 10.1038/labinvest.2014.95 Google Scholar
  58. 58.
    Sallin EA (1969) Fiber orientation and ejection fraction in the human left ventricle. Biophys J 9(7):954–964. doi: 10.1016/S0006-3495(69)86429-5 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP, Antman EM (2007) Diabetes and mortality following acute coronary syndromes. JAMA 298(7):765–775. doi: 10.1001/jama.298.7.765 PubMedCrossRefGoogle Scholar
  60. 60.
    Jacoby RM, Nesto RW (1992) Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol 20(3):736–744PubMedCrossRefGoogle Scholar
  61. 61.
    Howell NJ, Ashrafian H, Drury NE, Ranasinghe AM, Contractor H, Isackson H, Calvert M, Williams LK, Freemantle N, Quinn DW, Green D, Frenneaux M, Bonser RS, Mascaro JG, Graham TR, Rooney SJ, Wilson IC, Pagano D (2011) Glucose–insulin–potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: results from the hypertrophy, insulin, glucose, and electrolytes (HINGE) trial. Circulation 123(2):170–177. doi: 10.1161/CIRCULATIONAHA.110.945170 PubMedCrossRefGoogle Scholar
  62. 62.
    Ji L, Zhang X, Liu W, Huang Q, Yang W, Fu F, Ma H, Su H, Wang H, Wang J, Zhang H, Gao F (2013) AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 8(7):e69910. doi: 10.1371/journal.pone.0069910 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, Cokkinos DV (2008) Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59(2):253–269PubMedGoogle Scholar
  64. 64.
    Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42(10):718–724PubMedCrossRefGoogle Scholar
  65. 65.
    Mourouzis I, Kostakou E, Galanopoulos G, Mantzouratou P, Pantos C (2013) Inhibition of thyroid hormone receptor alpha1 impairs post-ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem 379(1–2):97–105. doi: 10.1007/s11010-013-1631-9 PubMedCrossRefGoogle Scholar
  66. 66.
    Mai W, Janier MF, Allioli N, Quignodon L, Chuzel T, Flamant F, Samarut J (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101(28):10332–10337PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Vose LR, Vinukonda G, Jo S, Miry O, Diamond D, Korumilli R, Arshad A, Zia MT, Hu F, Kayton RJ, La Gamma EF, Bansal R, Bianco AC, Ballabh P (2013) Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 33(44):17232–17246. doi: 10.1523/JNEUROSCI.2713-13.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, Mourouzis I, Sfyrakis P, Iervasi G, Pantos C (2013) Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact CardioVasc Thorac Surg 17(4):664–668. doi: 10.1093/icvts/ivt294 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Pantos C, Mourouzis I (2014) The emerging role of TRalpha1 in cardiac repair: potential therapeutic implications. Oxid Med Cell Longev 2014:481482. doi: 10.1155/2014/481482 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297(1–2):65–72PubMedCrossRefGoogle Scholar
  71. 71.
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD, Howard WW, Iismaa SE, Chan AY, Crawford BH, Wagner MB, Martin DI, Lefer DJ, Graham RM, Husain A (2014) A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157(4):795–807. doi: 10.1016/j.cell.2014.03.035 PubMedCrossRefGoogle Scholar
  72. 72.
    Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res. doi: 10.1016/j.scr.2014.07.001 Google Scholar
  73. 73.
    van der Heide SM, Joosten BJ, Dragt BS, Everts ME, Klaren PH (2007) A physiological role for glucuronidated thyroid hormones: preferential uptake by H9c2(2-1) myotubes. Mol Cell Endocrinol 264(1–2):109–117. doi: 10.1016/j.mce.2006.10.012 PubMedCrossRefGoogle Scholar
  74. 74.
    van der Putten HH, Joosten BJ, Klaren PH, Everts ME (2002) Uptake of tri-iodothyronine and thyroxine in myoblasts and myotubes of the embryonic heart cell line H9c2(2-1). J Endocrinol 175(3):587–596PubMedCrossRefGoogle Scholar
  75. 75.
    Hellen N, Wheeler J, Pinto Riccardo C, Foldes G, Kodagoda T, Whiting G, Mioulane M, Terracciano C, Vauchez K, Harding S (2014) Effect of T3 on human induced pluripotent stem cell-derived cardiomyocyte maturation. Cardiovasc Res 103(1):S62CrossRefGoogle Scholar
  76. 76.
    Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin Z, Xiaoping X, Needle S, Grygielko ET, Hu E, Toomey JR, Lepore JJ, Willette RN (2013) Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol 305(6):H913–H922. doi: 10.1152/ajpheart.00819.2012 PubMedCrossRefGoogle Scholar
  77. 77.
    Liappas A, Mourouzis I, Zisakis A, Economou K, Lea R-W, Pantos C (2011) Cell type dependent thyroid hormone effects on glioma tumor cell lines. J Thyroid Res 2011:856050. doi: 10.4061/2011/856050
  78. 78.
    Tacon CL, McCaffrey J, Delaney A (2011) Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med 38(3):359–367. doi: 10.1007/s00134-011-2435-6 PubMedCrossRefGoogle Scholar
  79. 79.
    Zaroff JG, Rosengard BR, Armstrong WF, Babcock WD, D’Alessandro A, Dec GW, Edwards NM, Higgins RS, Jeevanandum V, Kauffman M, Kirklin JK, Large SR, Marelli D, Peterson TS, Ring WS, Robbins RC, Russell SD, Taylor DO, Van Bakel A, Wallwork J, Young JB (2002) Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City. Va. Circulation 106(7):836–841CrossRefGoogle Scholar
  80. 80.
    Gerdes AM, Iervasi G (2010) Thyroid replacement therapy and heart failure. Circulation 122(4):385–393. doi: 10.1161/CIRCULATIONAHA.109.917922 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of AthensAthensGreece

Personalised recommendations