Heart Failure Reviews

, Volume 20, Issue 2, pp 215–226 | Cite as

Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential



Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are 123I-metaiodobenzylguanidine (123I-mIBG) for planar and single-photon emission computed tomography imaging, and 11C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of 123I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.


Cardiac sympathetic innervation 123I-Metaiodobenzylguanidine 11C-Hydroxyephedrine Positron emission tomography (PET) 


Conflict of interest

No conflict of interest or funding sources for preparation of this manuscript.


  1. 1.
    Go AS, Mozaffarian D, Roger VL et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245CrossRefPubMedGoogle Scholar
  2. 2.
    Bristow MR (1984) The adrenergic nervous system in heart failure. N Engl J Med 311:850–851CrossRefPubMedGoogle Scholar
  3. 3.
    Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451CrossRefPubMedGoogle Scholar
  4. 4.
    Hasking GJ, Ester MD, Jennings GL et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621CrossRefPubMedGoogle Scholar
  5. 5.
    Davis D, Baily R, Zeus R (1988) Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 254:760E–766EGoogle Scholar
  6. 6.
    Kaye DM, Lambert GW, Lefkovits J et al (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23(3):570–578CrossRefPubMedGoogle Scholar
  7. 7.
    Meredith IT, Eisenhofer G, Lambert GW et al (1993) Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation 88(1):136–145CrossRefPubMedGoogle Scholar
  8. 8.
    Pool PE, Covell JW, Levitt M et al (1967) Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure: its role in the depletion of cardiac norepinephrine stores. Circ Res 20:349–353CrossRefPubMedGoogle Scholar
  9. 9.
    Chang PC, Kriek E, van der Krogt JA et al (1991) Does regional norepinephrine spillover represent local sympathetic activity? Hypertension 18:56–66CrossRefPubMedGoogle Scholar
  10. 10.
    Eisenhofer G, Friberg P, Rundqvist B et al (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93(9):1667–1676CrossRefPubMedGoogle Scholar
  11. 11.
    Rundqvist B, Elam M, Bergmann-Sverrisdottir Y et al (1997) Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 95(1):169–175CrossRefPubMedGoogle Scholar
  12. 12.
    Ramchandra R, Hood SG, Watson AM et al (2008) Responses of cardiac sympathetic nerve activity to changes in circulating volume differ in normal and heart failure sheep. Am J Physiol Regul Integr Comp Physiol 295:R719–R726CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Ramchandra R, Hood SG, Denton DA et al (2009) Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci USA 106:924–928CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ramchandra R, Hood SG, Frithiof R et al (2009) Discharge properties of cardiac and renal sympathetic nerves and their impaired responses to changes in blood volume in heart failure. Am J Physiol Regul Integr Comp Physiol 297:R665–R674CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Travin MI (2009) Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 27:311–327CrossRefPubMedGoogle Scholar
  16. 16.
    Ungerer M, Bohm M, Elce JS et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463CrossRefPubMedGoogle Scholar
  17. 17.
    Caldwell JH, Link JM, Levy WC et al (2008) Evidence for pre to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 49:234–241CrossRefPubMedGoogle Scholar
  18. 18.
    Hattori N, Schwaiger M (2000) Metaiodobenzylguanidine scintigraphy of the heart. What have we learnt clinically? Eur J Nucl Med 27:1–6CrossRefPubMedGoogle Scholar
  19. 19.
    Kline RC, Swanson DP, Wieland DM et al (1981) Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med 22:129–132PubMedGoogle Scholar
  20. 20.
    Dilsizian V, Chandrashekhar Y, Narula J (2010) Introduction of new tests: low are the mountains, high the expectations. J Am Coll Cardiol 3:117–119CrossRefGoogle Scholar
  21. 21.
    Agostini D, Carrio I, Verberne HJ (2009) How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 36:555–559CrossRefPubMedGoogle Scholar
  22. 22.
    Thackeray JT, Bengel FM (2013) Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol 20(1):150–165CrossRefPubMedGoogle Scholar
  23. 23.
    Rosenspire KC, Haka MS, Van Dort ME et al (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334PubMedGoogle Scholar
  24. 24.
    DeGrado TR, Hutchins GD, Toorongian SA et al (1993) Myocardial kinetics of carbon-11-meta hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 34:1287–1293PubMedGoogle Scholar
  25. 25.
    Schwaiger M, Kalff V, Rosenspire K et al (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82:457–464CrossRefPubMedGoogle Scholar
  26. 26.
    Raffel DM, Corbett JR, del Rosario RB et al (1996) Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 37:1923–1931PubMedGoogle Scholar
  27. 27.
    Goldstein DS, Eisenhofer G, Dunn BB et al (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961–1971CrossRefPubMedGoogle Scholar
  28. 28.
    Caldwell JH, Kroll K, Li Z et al (1998) Quantitation of presynaptic cardiac sympathetic function with carbon-11-meta-hydroxyephedrine. J Nucl Med 39:1327–1334PubMedGoogle Scholar
  29. 29.
    Matsunari I, Aoki H, Nomura Y et al (2010) Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3:595–603CrossRefPubMedGoogle Scholar
  30. 30.
    Verberne HJ, Brewster LM, Somsen GA et al (2008) Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 29(9):1147–1159CrossRefPubMedGoogle Scholar
  31. 31.
    Jacobson AF, Senior R, Cerqueira MD et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221CrossRefPubMedGoogle Scholar
  32. 32.
    Nakata T, Nakajima K, Yamashina S et al (2013) A pooled analysis of multicenter cohort studies of 123 I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. J Am Coll Cardiol Imaging 6(7):772–784CrossRefGoogle Scholar
  33. 33.
    Ketchum ES, Jacobson AF, Caldwell JH et al (2012) Selective improvement in Seattle heart failure model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol 19(5):1007–1016CrossRefPubMedGoogle Scholar
  34. 34.
    Fukuoka S, Hayashida K, Hirose Y et al (1997) Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of beta-blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 24:523–529PubMedGoogle Scholar
  35. 35.
    Yamazaki J, Muto H, Kabano T et al (2001) Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy—clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J 141:645–652CrossRefPubMedGoogle Scholar
  36. 36.
    Kasama S, Toyama T, Hatori T et al (2007) Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J 28(8):989–995CrossRefPubMedGoogle Scholar
  37. 37.
    Agostini D, Belin A, Amar MH et al (2000) Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 1231-MIBG scintigraphic study. J Nucl Med 41(5):845–851PubMedGoogle Scholar
  38. 38.
    Gerson MC, Craft LL, McGuire N et al (2002) Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol 9(6):608–615CrossRefPubMedGoogle Scholar
  39. 39.
    de Peuter OR, Verberne HJ, Kok WE et al (2013) Differential effects of nonselective versus selective β-blockers on cardiac sympathetic activity and hemostasis in patients with heart failure. J Nucl Med 54(10):1733–1739CrossRefPubMedGoogle Scholar
  40. 40.
    Azevedo ER, Kubo T, Mak S et al (2001) Nonselective versus selective beta-adrenergic receptor blockade in congestive heart failure: differential effects on sympathetic activity. Circulation 104(18):2194–2199CrossRefPubMedGoogle Scholar
  41. 41.
    Somsen GA, van Vlies B, de Milliano PA et al (1996) Increased myocardial [123I]-metaiodobenzylguanidine uptake after enalapril treatment in patients with chronic heart failure. Heart 76(3):218–225CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Takeishi Y, Atsumi H, Fujiwara S et al (1997) ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 38(7):1085–1089PubMedGoogle Scholar
  43. 43.
    Kasama S, Toyama T, Kumakura H et al (2003) Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med 44(6):884–890PubMedGoogle Scholar
  44. 44.
    Kasama S, Toyama T, Kumakura H et al (2002) Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 43(10):1279–1285PubMedGoogle Scholar
  45. 45.
    Toyama T, Hoshizaki H, Seki R et al (2004) Efficacy of amiodarone treatment on cardiac symptom, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with beta-blocker therapy. J Nucl Cardiol 11(2):134–141CrossRefPubMedGoogle Scholar
  46. 46.
    Toyama T, Hoshizaki H, Yoshimura Y et al (2008) Combined therapy with carvedilol and amiodarone is more effective in improving cardiac symptoms, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with carvedilol therapy alone. J Nucl Cardiol 15(1):57–64CrossRefPubMedGoogle Scholar
  47. 47.
    Kasama S, Toyama T, Sumino H et al (2008) Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 49(6):907–914CrossRefPubMedGoogle Scholar
  48. 48.
    Adabag AS, Luepker RV, Roger VL et al (2010) Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol 7:216–225CrossRefPubMedGoogle Scholar
  49. 49.
    Podrid PJ, Fuchs T, Candinas R (1990) Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 82:103–113Google Scholar
  50. 50.
    Epstein AE, DiMarco JP, Ellenbogen KA et al (2008) ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemaker and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62CrossRefPubMedGoogle Scholar
  51. 51.
    Stecker EC, Vickers C, Waltz J et al (2006) Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction. Two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol 47:1161–1166CrossRefPubMedGoogle Scholar
  52. 52.
    Arora R, Ferrick KJ, Nakata T et al (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131CrossRefPubMedGoogle Scholar
  53. 53.
    Boogers MJ, Borleffs CJ, Henneman MM et al (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55(24):2769–2777CrossRefPubMedGoogle Scholar
  54. 54.
    Tamaki S, Yamada T, Okuyama Y et al (2009) Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 53(5):426–435CrossRefPubMedGoogle Scholar
  55. 55.
    Chou CC, Zhou S, Hayashi H et al (2007) Remodeling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in langendorff-perfused rabbit hearts. J Physiol 580:895–906CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Naud P, Guasch E, Nattel S (2010) Physiological versus pathological cardiac electrical remodeling: potential basis and relevance to clinical management. J Physiol 588:4855–4856CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Zipes DP (1990) Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation 82:1095–1105CrossRefPubMedGoogle Scholar
  58. 58.
    Kammerling JJ, Green FJ, Watanabe AM et al (1987) Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 76:383–393CrossRefPubMedGoogle Scholar
  59. 59.
    Bax JJ, Kraft O, Buxton AE et al (2008) 123 I-MIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 1:131–140CrossRefPubMedGoogle Scholar
  60. 60.
    Fallavollita JA, Heavey BM, Luisi AJ Jr et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):141–149CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Nishioka SA, Martinelli Filho M, Brandão SC et al (2007) Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol 14(6):852–859CrossRefPubMedGoogle Scholar
  62. 62.
    Burri H, Sunthorn H, Somsen A et al (2008) Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 10(3):374–378CrossRefPubMedGoogle Scholar
  63. 63.
    Cha Y, Panithaya C, Ying-Xue D et al (2011) Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circulation. Heart Failure 4(3):339–344CrossRefPubMedGoogle Scholar
  64. 64.
    Tanaka H, Tatsumi K, Fujiwara S et al (2012) Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J 76(2):382–389CrossRefPubMedGoogle Scholar
  65. 65.
    Ewer MS, Ali MK, Mackay B et al (1984) A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving adriamycin. J Clin Oncol 2:112–117PubMedGoogle Scholar
  66. 66.
    Wakasugi S, Wada A, Hasegawa Y et al (1992) Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-meta-iodobenzylguanidine. J Nucl Med 33:208–214PubMedGoogle Scholar
  67. 67.
    Wakasugi S, Fischman AJ, Babich JW et al (1993) Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 34:1283–1286PubMedGoogle Scholar
  68. 68.
    Lekakis J, Prassopoulos V, Athanassiadis P et al (1996) Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzyiguanidine scintigraphy. J Nucl Cardiol 3:37–41CrossRefPubMedGoogle Scholar
  69. 69.
    Jeon TJ, Lee JD, Ha JW et al (2000) Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 BG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 27:686–693CrossRefPubMedGoogle Scholar
  70. 70.
    Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497–2505CrossRefPubMedGoogle Scholar
  71. 71.
    Ogletree-Hughes ML, Stull LB, Sweet WE et al (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104:881–886CrossRefPubMedGoogle Scholar
  72. 72.
    Drakos SG, Athanasoulis T, Malliaras KG et al (2010) Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging 3(1):64–70CrossRefPubMedGoogle Scholar
  73. 73.
    George RS, Birks EJ, Cheetham A et al (2013) The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 15(9):1035–1043CrossRefPubMedGoogle Scholar
  74. 74.
    Estorch M, Campreciós M, Flotats A et al (1999) Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 40(6):911–916PubMedGoogle Scholar
  75. 75.
    Buendia-Fuentes F, Almenar L, Ruiz C et al (2011) Sympathetic reinnervation 1 year after heart transplantation, assessed using iodine-123 metaiodobenzylguanidine imaging. Transplant Proc 43(6):2247–2248CrossRefPubMedGoogle Scholar
  76. 76.
    Bengel FM, Ueberfuhr P, Ziegler SI et al (1999) Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 99(14):1866–1871CrossRefPubMedGoogle Scholar
  77. 77.
    Odaka K, von Scheidt W, Ziegler SI et al (2001) Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 42:1011–1016PubMedGoogle Scholar
  78. 78.
    van der Veen L, Scholte A, Stokkel M (2010) Mathematical methods to determine quantitative parameters of myocardial 123I-MIBG studies: a review of the literature. Nucl Med Commun 31(7):617–628PubMedGoogle Scholar
  79. 79.
    Inoue Y, Suzuki A, Shirouzu I et al (2003) Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 10:623–632CrossRefPubMedGoogle Scholar
  80. 80.
    Dobbeleir AA, Hambye AS, Franken PR (1999) Influence of high-energy photons on the spectrum of iodine-123 with low and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 26:655–658CrossRefPubMedGoogle Scholar
  81. 81.
    Nakajima K, Matsubara K, Ishikawa T et al (2007) Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol 14(6):843–851CrossRefPubMedGoogle Scholar
  82. 82.
    Nakajima K, Okuda K, Matsuo S et al (2012) Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging 39:113–119CrossRefPubMedGoogle Scholar
  83. 83.
    Okuda K, Nakajima K, Hosoya T et al (2011) Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol 18(1):82–89CrossRefPubMedGoogle Scholar
  84. 84.
    Jacobson AF, Matsuoka DT (2013) Influence of myocardial region of interest definition on quantitative analysis of planar 123I-mIBG images. Eur J Nucl Med Mol Imaging 40(4):558–564CrossRefPubMedGoogle Scholar
  85. 85.
    Sakata K, Iida K, Mochizuki N et al (2009) Physiological changes in human cardiac sympathetic innervation and activity assessed by (123)I-metaiodobenzylguanidine (MIGB) imaging. Circ J 73(2):310–315CrossRefPubMedGoogle Scholar
  86. 86.
    Tobes MC, Jaques S Jr, Wieland DM, Sisson JC (1985) Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med 26:897–907PubMedGoogle Scholar
  87. 87.
    Fagret D, Wolf J, Comet M (1988) Influence of adrenergic blocking agents on the myocardial uptake of 123 iodine metaiodobenzylguanidine (123I-MIBG) [abstract]. Eur J Nucl Med 14:259CrossRefGoogle Scholar
  88. 88.
    Estorch M, Carrio I, Mena E et al (2004) Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake. Eur J Nucl Med Mol Imaging 31:1575–1580CrossRefPubMedGoogle Scholar
  89. 89.
    Sherman PS, Fisher SJ, Wieland DM et al (1985) Over the counter drugs block heart accumulation of MIBG. J Nucl Med 26:P35Google Scholar
  90. 90.
    Grossman E, Messerli FH (1998) Effect of calcium antagonists on sympathetic activity. Eur Heart J 19(Suppl F):F27–F31PubMedGoogle Scholar
  91. 91.
    Stefanelli A, Treglia G, Bruno I et al (2013) Pharmacological interference with 123I-metaiodobenzylguanidine: a limitation to developing cardiac innervation imaging in clinical practice? Eur Rev Med Pharmacol Sci 17(10):1326–1333PubMedGoogle Scholar
  92. 92.
    Ahmad G, Mesubi O, Dickfeld T et al (2012) Assessment of regional cardiac innervation using I123-meta-iodobenzylguanidine for guiding ventricular tachycardia ablation [abstract]. In: Scientific sessions—Heart Rhythm Society 9–12 May 2012, Boston, MAGoogle Scholar
  93. 93.
    Klein T, Mesubi O, Ahmad G et al (2012) Assessment of global cardiac innervation using I123-Meta-iodobenzylguanidine before and after ventricular tachycardia ablation [abstract]. In: Scientific sessions—American Heart Association. 4–6 Nov 2012, Los Angeles, CAGoogle Scholar
  94. 94.
    Bengel FM (2011) Imaging targets of the sympathetic nervous system of the heart: translational considerations. J Nucl Med 52:1167–1170CrossRefPubMedGoogle Scholar
  95. 95.
    Liu Y, Srivastiva A, Mulnix T et al (2010) Quantification of normal pattern of regional myocardial uptake of 18F LMI1195, a novel tracer for imaging myocardial sympathetic function: first-in-human study [abstract]. J Nucl Med 51(suppl2):250PGoogle Scholar
  96. 96.
    Chen IY, Wu JC (2011) Cardiovascular molecular imaging: focus on clinical translation. Circulation 123(4):425–443Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Einstein Institute for Heart and Vascular HealthEinstein Medical CenterPhiladelphiaUSA
  2. 2.Jefferson Medical CollegePhiladelphiaUSA

Personalised recommendations