Heart Failure Reviews

, Volume 18, Issue 3, pp 267–275 | Cite as

Echocardiography in pericardial diseases: new developments



Echocardiography is one of the most important clinical tools in the diagnosis and management of various pericardial diseases, including constrictive pericarditis, effusive constrictive pericarditis, pericardial effusion, tamponade, absence of the pericardium and cysts or tumors. During recent years, remarkable progress has been made in echocardiography: cardiac tissue Doppler analysis (TDI), strain and strain rate imaging by speckle tracking imaging (STE) and three-dimensional (3D) echocardiography. The assessment of early diastolic annulus velocity and annulus reversus by TDI improves the differentiation of constriction from restrictive myocardial disease, which can be further facilitated by STE as a complementary tool. 3D echocardiography may be useful for the more precise assessment of pericardial diseases, such as pericardial effusion or pericardial masses as it provides incremental value to 2D echocardiography by detecting anatomic structures with higher accuracy. Applications of these newer echocardiographic techniques in the assessment of pericardial diseases are discussed in this chapter.


Pericardial diseases Tissue Doppler imaging Speckle tracking echocardiography 3D echocardiography 


Conflict of interest

Drs. Veress, Feng, and Oh have no conflicts of interest or financial ties to disclose.


  1. 1.
    Oh JK, Seward JB, Tajik AJ (2006) Tissue Doppler imaging, strain imaging, and dyssynchrony assessment. In: The echo manual, 3rd edn. Lippincott Williams and Wilkins (a Wolters Kluwer business), pp 80–86Google Scholar
  2. 2.
    Soliman OI, Krenning BJ, Geleijnse ML, Nemes A, van Geuns RJ, Baks T, Anwar AM, Galema TW, Vletter WB, ten Cate FJ (2007) A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echocardiographic quantification of left ventricular volumes. Echocardiography 24:967–974PubMedCrossRefGoogle Scholar
  3. 3.
    Qi X, Cogar B, Hsiung MC, Nanda NC, Miller AP, Yelamanchili P, Baysan O, Wu YS, Lan GY, Ko JS, Cheng CH, Lin CC, Huang CM, Yin WH, Young MS (2007) Live/real time three-dimensional transthoracic echocardiographic assessment of left ventricular volumes, ejection fraction, and mass compared with magnetic resonance imaging. Echocardiography 24:166–173PubMedCrossRefGoogle Scholar
  4. 4.
    Stefanidis AS, Margos PN, Kotsakis AA, Papasteriadis EG (2009) Three-dimensional echocardiographic documentation of pacemaker lead perforation presenting as acute pericarditis. Hellenic J Cardiol 50:335–337PubMedGoogle Scholar
  5. 5.
    Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Klein AL (1996) Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol 27:108–114PubMedCrossRefGoogle Scholar
  6. 6.
    Rajagopalan N, Garcia MJ, Rodriguez L, Murray RD, Apperson-Hansen C, Stugaard M, Thomas JD, Klein AL (2001) Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol 87:86–94PubMedCrossRefGoogle Scholar
  7. 7.
    Ha JW, Ommen SR, Tajik AJ, Barnes ME, Ammash NM, Gertz MA, Seward JB, Oh JK (2004) Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol 94:316–319PubMedCrossRefGoogle Scholar
  8. 8.
    Sohn DW, Kim YJ, Kim HS, Kim KB, Park YB, Choi YS (2004) Unique features of early diastolic mitral annulus velocity in constrictive pericarditis. J Am Soc Echocardiogr 17:222–226PubMedCrossRefGoogle Scholar
  9. 9.
    Ha JW, Oh JK, Ommen SR, Ling LH, Tajik AJ (2002) Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity. J Am Soc Echocardiogr 15:1468–1471PubMedCrossRefGoogle Scholar
  10. 10.
    Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK (2005) Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol 93:886–890CrossRefGoogle Scholar
  11. 11.
    Arnold MF, Voigt JU, Kukulski T, Wranne B, Sutherland GR, Hatle L (2001) Does atrioventricular ring motion always distinguish constriction from restriction? A Doppler myocardial imaging study. J Am Soc Echocardiogr 14:391–395PubMedCrossRefGoogle Scholar
  12. 12.
    Butz T, Langer C, Scholtz W, Jategaonkar S, Bogunovic N, Horstkotte D, Faber L (2008) Severe calcification of the lateral mitral annulus in constrictive pericarditis: a potential pitfall for the use of echocardiographic tissue Doppler imaging. Eur J Echocardiogr 9:403–405PubMedGoogle Scholar
  13. 13.
    Choi EY, Ha JW, Kim JM, Ahn JA, Seo HS, Lee JH, Rim SJ, Chung N (2007) Incremental value of combining systolic mitral annular velocity and time difference between mitral inflow and diastolic mitral annular velocity to early diastolic annular velocity for differentiating constrictive pericarditis from restrictive cardiomyopathy. J Am Soc Echocardiogr 20:738–743PubMedCrossRefGoogle Scholar
  14. 14.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533PubMedCrossRefGoogle Scholar
  15. 15.
    Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794PubMedCrossRefGoogle Scholar
  16. 16.
    Ha JW, Oh JK, Ling LH, Nishimura RA, Seward JB, Tajik AJ (2001) Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation 104:976–978PubMedCrossRefGoogle Scholar
  17. 17.
    Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R (2010) Normative reference values for the tissue Doppler imaging parameters of left ventricular function: a population-based study. Eur J Echocardiogr 11:51–56PubMedCrossRefGoogle Scholar
  18. 18.
    Reuss CS, Wilansky SM, Lester SJ, Lusk JL, Grill DE, Oh JK, Tajik AJ (2009) Using mitral ‘annulus reversus’ to diagnose constrictive pericarditis. Eur J Echocardiogr 10:372–375PubMedCrossRefGoogle Scholar
  19. 19.
    Choi JH, Choi JO, Ryu DR, Lee SC, Park SW, Choe YH, Oh JK (2011) Mitral and tricuspid annular velocities in constrictive pericarditis and restrictive cardiomyopathy: correlation with pericardial thickness on computed tomography. JACC Cardiovasc Imaging 4:567–575PubMedCrossRefGoogle Scholar
  20. 20.
    Kim JS, Ha JW, Im E, Park S, Choi EY, Cho YH, Kim JM, Rim SJ, Yoon YN, Chang BC (2009) Effects of pericardiectomy on early diastolic mitral annular velocity in patients with constrictive pericarditis. Int J Cardiol 133:18–22PubMedCrossRefGoogle Scholar
  21. 21.
    Veress G, Ling LH, Kim KH, Dal-Bianco JP, Schaff HV, Espinosa RE, Melduni RM, Tajik JA, Sundt TM 3rd, Oh JK (2011) Mitral and tricuspid annular velocities before and after pericardiectomy in patients with constrictive pericarditis. Circ Cardiovasc Imaging 4:399–407PubMedCrossRefGoogle Scholar
  22. 22.
    Lu XF, Wang XF, Cheng TO, Xie MX, Lu Q (2009) Diagnosis of constrictive pericarditis by quantitative tissue Doppler imaging. Int J Cardiol 137:22–28PubMedCrossRefGoogle Scholar
  23. 23.
    Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, Korinek J, Belohlavek M, Sundt TM 3rd, Chandrasekaran K, Mookadam F, Seward JB, Tajik AJ, Khandheria BK (2008) Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging 1:29–38PubMedCrossRefGoogle Scholar
  24. 24.
    Sengupta P, Eleid MF, Sundt TM, Chandrasekaran K, Tajik AJ, Khandheria BK (2008) Regional variability of pericardial thickness influences left ventricular diastolic recoil mechanics in constrictive pericarditis. J Am Soc Echocardiogr 21:518CrossRefGoogle Scholar
  25. 25.
    Veress G, Kim KH, Masaki M, Espinosa RE, Oh JK (2010) Differential diagnosis of constrictive pericarditis from restrictive myocardial disease by speckle tracking echocardiography. J Am Coll Cardiol 55:10ACrossRefGoogle Scholar
  26. 26.
    Imazio M (2011) Pericarditis: pathophysiology, diagnosis, and management. Curr Infect Dis Rep 13:308–316PubMedCrossRefGoogle Scholar
  27. 27.
    Leitman M, Bachner-Hinenzon N, Adam D, Fuchs T, Theodorovich N, Peleg E, Krakover R, Moravsky G, Uriel N, Vered Z (2011) Speckle tracking imaging in acute inflammatory pericardial diseases. Echocardiography 28:548–555PubMedCrossRefGoogle Scholar
  28. 28.
    Karia DH, Xing YQ, Kuvin JT, Nesser HJ, Pandian NG (2002) Recent role of imaging in the diagnosis of pericardial disease. Curr Cardiol Rep 4:33–40PubMedCrossRefGoogle Scholar
  29. 29.
    Connolly HM, Click RL, Schattenberg TT, Seward JB, Tajik AJ (1995) Congenital absence of the pericardium: echocardiography as a diagnostic tool. J Am Soc Echocardiogr 8:87–92PubMedCrossRefGoogle Scholar
  30. 30.
    Topilsky Y, Tabatabaei N, Freeman WK, Saleh HK, Villarraga HR, Mulvagh SL (2010) Images in cardiovascular medicine. Pendulum heart in congenital absence of the pericardium. Circulation 121:1272–1274PubMedCrossRefGoogle Scholar
  31. 31.
    Hernandez CM, Singh P, Hage FG, Nanda NC, Hsiung MC, Wei J, Chang CY, Lee KC, Sue SH, Yin WH, Aly NA, Deshmukh O, Biswas M, Gupta I, Sanam K, Sen U (2009) Live/real time three-dimensional transthoracic echocardiographic assessment of pericardial disease. Echocardiography 26:1250–1263PubMedCrossRefGoogle Scholar
  32. 32.
    D’Cruz IA, Minderman D, Dockery BK (2009) Three-dimensional imaging of intrapericardial adhesions within a large pericardial effusion. Can J Cardiol 25:366PubMedCrossRefGoogle Scholar
  33. 33.
    Scohy TV, Maat AP, McGhie J, ten Cate FJ, Bogers AJ (2009) Three-dimensional transesophageal echocardiography: diagnosing the extent of pericarditis constrictiva and intraoperative surgical support. J Card Surg 24:305–308PubMedCrossRefGoogle Scholar
  34. 34.
    Misselt AJ, Harris SR, Glockner J, Feng D, Syed IS, Araoz PA (2008) MR imaging of the pericardium. Magn Reson Imaging Clin N Am 16:185–199PubMedCrossRefGoogle Scholar
  35. 35.
    Zagol B, Minderman D, Munir A, D’Cruz I (2007) Effusive constrictive pericarditis: 2D, 3D echocardiography and MRI imaging. Echocardiography 24:1110–1114PubMedCrossRefGoogle Scholar
  36. 36.
    Feng D, Glockner J, Kim K, Martinez M, Syed IS, Araoz P, Breen J, Espinosa RE, Sundt T, Schaff HV, Oh JK (2011) Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation 124:1830–1837PubMedCrossRefGoogle Scholar
  37. 37.
    Sagrista-Sauleda J, Permanyer-Miralda G, Candell-Riera J, Angel J, Soler–Soler J (1987) Transient cardiac constriction: an unrecognized pattern of evolution in effusive acute idiopathic pericarditis. Am J Cardiol 59:961–966PubMedCrossRefGoogle Scholar
  38. 38.
    Oh JK, Hatle LK, Mulvagh SL, Tajik AJ (1993) Transient constrictive pericarditis: diagnosis by two-dimensional Doppler echocardiography. Mayo Clin Proc 68:1158–1164PubMedCrossRefGoogle Scholar
  39. 39.
    Haley JH, Tajik AJ, Danielson GK, Schaff HV, Mulvagh SL, Oh JK (2004) Transient constrictive pericarditis: causes and natural history. J Am Coll Cardiol 43:271–275PubMedCrossRefGoogle Scholar
  40. 40.
    Akyuz S, Yaylak B, Ergelen M, Uyarel H (2010) Transient constrictive pericarditis: an elusive diagnosis. Future Cardiol 6:785–790PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mayo ClinicDivision of Cardiovascular DiseasesRochesterUSA
  2. 2.Heart CentreSemmelweis UniversityBudapestHungary
  3. 3.Metropolitan Heart and Vascular InstituteMinneapolisUSA

Personalised recommendations