Heart Failure Reviews

, Volume 17, Issue 3, pp 449–473 | Cite as

Angiogenic therapy for cardiac repair based on protein delivery systems

  • F. R. Formiga
  • E. Tamayo
  • T. Simón-Yarza
  • B. Pelacho
  • F. Prósper
  • M. J. Blanco-Prieto


Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.


Cardiovascular diseases Cardiac repair Growth factor Angiogenesis Protein delivery 





Colony granulocyte stimulating factor


Chronic heart failure


Cardiac-specific myosin light-chain kinase


Cardiovascular diseases


Endothelial cell


Extracellular matrix


Epidermal growth factor


Endothelial progenitor cell




NRG tyrosine kinase receptor


US Food and drug administration


Fibroblast growth factor


Acidic fibroblast growth factor


Basic fibroblast growth factor


FGF tyrosine kinase receptor


Granulocyte colony-stimulating factor


Growth factor


Hepatocyte growth factor


Hypoxia inducible factor-1α


Heparan sulfate proteoglycans


Ischemic heart disease


Left anterior descending coronary artery


Left ventricle ejection fraction


Monocyte chemoattractant protein-1


Matrix metalloproteinases


Nitric oxide




Platelet-derived growth factor


PDGF tyrosine kinase receptor


Poly(ethylene glycol)


Poly(ethylene oxide)


Sonic hedgehog


Transforming growth factor-β


Ang tyrosine kinase receptor


Tumor necrosis factor-α


Vascular endothelial growth factor


VEGF tyrosine kinase receptor


Vascular smooth muscle cell


World Heart Federation


World Health Organization



This work was supported in part by Instituto de Salud Carlos III (ISCIII PI050168, PI10/01621, CP09/00333 and ISCIII-RETIC RD06/0014), Ministerio de Ciencia e Innovación (PLE2009-0116 and PSE SINBAD, PSS 0100000-2008-1), Gobierno de Navarra (Departamento de Educación), Comunidad de Trabajo de los Pirineos (CTP), European Union Framework Project VII (INELPY), Agencia Española de Cooperación Internacional para el Desarrollo (AECID), Caja de Ahorros de Navarra (Programa Tu Eliges: Tu Decides) and the “UTE project CIMA”.


  1. 1.
    WHO (2008) WHO The global burden of disease: 2004 update. Last visited March 2011
  2. 2.
    Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–e151PubMedCrossRefGoogle Scholar
  3. 3.
    Mackay J, Mensah G (2004) Atlas of heart disease and stroke. World Health Organization, GenevaGoogle Scholar
  4. 4.
    Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21(12 Suppl 1):I14–I19PubMedCrossRefGoogle Scholar
  5. 5.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRefGoogle Scholar
  6. 6.
    Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633PubMedCrossRefGoogle Scholar
  7. 7.
    Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223(4642):1296–1299PubMedCrossRefGoogle Scholar
  8. 8.
    Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 82(19):6507–6511PubMedCrossRefGoogle Scholar
  9. 9.
    Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:1–18CrossRefGoogle Scholar
  10. 10.
    Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109(21):2487–2491PubMedCrossRefGoogle Scholar
  11. 11.
    Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA (2007) Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12(3–4):267–277PubMedCrossRefGoogle Scholar
  12. 12.
    Carmeliet P (2000) Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res 87(3):176–178PubMedGoogle Scholar
  13. 13.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673PubMedCrossRefGoogle Scholar
  14. 14.
    Claffey KP, Abrams K, Shih SC, Brown LF, Mullen A, Keough M (2001) Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. Lab Invest 81(1):61–75PubMedCrossRefGoogle Scholar
  15. 15.
    Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118(Pt 16):3759–3768PubMedCrossRefGoogle Scholar
  16. 16.
    Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, Sueishi K (2006) Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26(11):2483–2489PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858PubMedCrossRefGoogle Scholar
  18. 18.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRefGoogle Scholar
  19. 19.
    Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189PubMedCrossRefGoogle Scholar
  20. 20.
    Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580PubMedCrossRefGoogle Scholar
  21. 21.
    Kutryk MJ, Stewart DJ (2003) Angiogenesis of the heart. Microsc Res Tech 60(2):138–158PubMedCrossRefGoogle Scholar
  22. 22.
    Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98(5):2604–2609PubMedCrossRefGoogle Scholar
  23. 23.
    Fujio Y, Walsh K (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274(23):16349–16354PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778PubMedCrossRefGoogle Scholar
  25. 25.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521PubMedCrossRefGoogle Scholar
  26. 26.
    Davis S, Yancopoulos GD (1999) The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237:173–185PubMedCrossRefGoogle Scholar
  27. 27.
    Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64(1):135–147PubMedCrossRefGoogle Scholar
  28. 28.
    Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312(5):630–641PubMedCrossRefGoogle Scholar
  29. 29.
    Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49(3):659–670PubMedCrossRefGoogle Scholar
  30. 30.
    Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM (2003) Expression of VEGF and angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285(1):H352–H358PubMedGoogle Scholar
  31. 31.
    Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22):15732–15739PubMedCrossRefGoogle Scholar
  32. 32.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRefGoogle Scholar
  33. 33.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRefGoogle Scholar
  34. 34.
    Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228PubMedCrossRefGoogle Scholar
  35. 35.
    Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613PubMedCrossRefGoogle Scholar
  36. 36.
    Hao X, Mansson-Broberg A, Gustafsson T, Grinnemo KH, Blomberg P, Siddiqui AJ, Wardell E, Sylven C (2004) Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun 315(4):1058–1063PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E (2009) Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J 23(1):153–163PubMedCrossRefGoogle Scholar
  38. 38.
    Li X, Tjwa M, Moons L, Fons P, Noel A, Ny A, Zhou JM, Lennartsson J, Li H, Luttun A, Ponten A, Devy L, Bouche A, Oh H, Manderveld A, Blacher S, Communi D, Savi P, Bono F, Dewerchin M, Foidart JM, Autiero M, Herbert JM, Collen D, Heldin CH, Eriksson U, Carmeliet P (2005) Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 115(1):118–127PubMedGoogle Scholar
  39. 39.
    Li X, Kumar A, Zhang F, Lee C, Li Y, Tang Z, Arjunan P (2010) VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget 1(4):309–314PubMedGoogle Scholar
  40. 40.
    Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65PubMedCrossRefGoogle Scholar
  41. 41.
    Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE, Birchmeier C (1997) Isoform-specific expression and function of neuregulin. Development 124(18):3575–3586PubMedGoogle Scholar
  42. 42.
    Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279(49):51141–51147PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269PubMedCrossRefGoogle Scholar
  44. 44.
    Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA, Kelly RA, Sawyer DB (2003) Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 35(12):1473–1479PubMedCrossRefGoogle Scholar
  45. 45.
    Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJ, Marchionni MA, Lorell BH (2004) Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 110(6):713–717PubMedCrossRefGoogle Scholar
  46. 46.
    Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270PubMedCrossRefGoogle Scholar
  47. 47.
    Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, Wakeno M, Minamino T, Kondo H, Furukawa H, Nakamaru K, Naito A, Takahashi T, Ohtsuka T, Kawakami K, Isomura T, Kitamura S, Tomoike H, Mochizuki N, Kitakaze M (2007) A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 117(10):2812–2824PubMedCrossRefGoogle Scholar
  48. 48.
    Xu Y, Li X, Liu X, Zhou M (2010) Neuregulin-1/ErbB signaling and chronic heart failure. Adv Pharmacol 59:31–51PubMedCrossRefGoogle Scholar
  49. 49.
    Lemmens K, Fransen P, Sys SU, Brutsaert DL, De Keulenaer GW (2004) Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 109(3):324–326PubMedCrossRefGoogle Scholar
  50. 50.
    Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y, Elenius K (2007) Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 313(13):2896–2909PubMedCrossRefGoogle Scholar
  51. 51.
    Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, Graham RM, Macdonald PS (2010) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13(1):83–92PubMedCrossRefGoogle Scholar
  52. 52.
    Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X, Zhou M (2010) A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 55(18):1907–1914PubMedCrossRefGoogle Scholar
  53. 53.
    Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801PubMedCrossRefGoogle Scholar
  54. 54.
    Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75(7):1401–1416PubMedCrossRefGoogle Scholar
  55. 55.
    Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430PubMedCrossRefGoogle Scholar
  56. 56.
    Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75(7):1431–1444PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet A 123A(1):5–28PubMedCrossRefGoogle Scholar
  58. 58.
    Mimeault M, Batra SK (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 62(3):497–524PubMedCrossRefGoogle Scholar
  59. 59.
    Farzan SF, Singh S, Schilling NS, Robbins DJ (2008) The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 294(4):G844–G849PubMedCrossRefGoogle Scholar
  60. 60.
    Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411(6838):716–720PubMedCrossRefGoogle Scholar
  61. 61.
    Eaton S (2006) Release and trafficking of lipid-linked morphogens. Curr Opin Genet Dev 16(1):17–22PubMedCrossRefGoogle Scholar
  62. 62.
    Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA (2007) Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal 19(12):2596–2604PubMedCrossRefGoogle Scholar
  63. 63.
    Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–579PubMedCrossRefGoogle Scholar
  64. 64.
    Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118(7):2404–2414PubMedGoogle Scholar
  65. 65.
    Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP, Spek CA (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13(8B):2053–2060PubMedCrossRefGoogle Scholar
  66. 66.
    Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martinez MC, Andriantsitohaina R (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21(11):2735–2741PubMedCrossRefGoogle Scholar
  67. 67.
    Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martinez MC (2010) Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PloS One 5(9):e12688PubMedCrossRefGoogle Scholar
  68. 68.
    Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204PubMedCrossRefGoogle Scholar
  69. 69.
    Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7(6):706–711PubMedCrossRefGoogle Scholar
  70. 70.
    Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PloS One 5(1):e8576PubMedCrossRefGoogle Scholar
  71. 71.
    Ueda K, Takano H, Niitsuma Y, Hasegawa H, Uchiyama R, Oka T, Miyazaki M, Nakaya H, Komuro I (2010) Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest 120(6):2016–2029PubMedCrossRefGoogle Scholar
  72. 72.
    Bijlsma MF, Leenders PJ, Janssen BJ, Peppelenbosch MP, Ten Cate H, Spek CA (2008) Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med (Maywood) 233(8):989–996CrossRefGoogle Scholar
  73. 73.
    Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease. Circulation 97:645–650PubMedGoogle Scholar
  74. 74.
    Unger EF et al (2000) Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 85:1414–1419PubMedCrossRefGoogle Scholar
  75. 75.
    Laham RJ, Chronos NA, Marilyn P, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with ischemic heart disease: results of a Phase I open-label dose escalation study. J Am Coll Cardiol 36:2132–2139PubMedCrossRefGoogle Scholar
  76. 76.
    Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 105:788–793PubMedCrossRefGoogle Scholar
  77. 77.
    Gibson C, Laham R, Giordano F (1999) Magnitude and location of new angiographically apparent coronary collaterals following intravenous VEGF administration. J Am Coll Cardiol 33(Suppl. A):65A (Abstract)Google Scholar
  78. 78.
    Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO (2000) Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101:118–121PubMedGoogle Scholar
  79. 79.
    Henry TD, Rocha-Singh K, Isner JM et al (2001) Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial. Am Heart J 142:872–880PubMedCrossRefGoogle Scholar
  80. 80.
    Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial. Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365PubMedCrossRefGoogle Scholar
  81. 81.
    Meier P, Gloekler S, de Marchi SF, Indermuehle A, Rutz T, Traupe T, Steck H, Vogel R, Seiler C (2009) Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation 120(14):1355–1363PubMedCrossRefGoogle Scholar
  82. 82.
    Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, Maggiolini S, Squadroni L, Di Leo C, Burba I, Pesce M, Mircoli L, Capogrossi MC, Di Lelio A, Camisasca P, Morabito A, Colombo G, Pompilio G (2010) Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll mobilization in acute myocardial infarction (STEM-AMI) trial. Eur J Heart Fail 12(10):1111–1121PubMedCrossRefGoogle Scholar
  83. 83.
    Engelmann MG, Theiss HD, Theiss C, Henschel V, Huber A, Wintersperger BJ, Schoenberg SO, Steinbeck G, Franz WM (2010) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI trial. Int J Cardiol 144(3):399–404PubMedCrossRefGoogle Scholar
  84. 84.
    Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G, Franz WM (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-trial)—rationale, design and first interim analysis. Int J Cardiol 145(2):282–284PubMedCrossRefGoogle Scholar
  85. 85.
    Wang N, Tong G, Yang J, Zhou Z, Pan H, Huo Y, Xu J, Zhang X, Ling F, Li P (2009) Effect of hepatocyte growth-promoting factors on myocardial ischemia during exercise in patients with severe coronary artery disease. Int Heart J 50(3):291–299PubMedCrossRefGoogle Scholar
  86. 86.
    Tang YD, Hasan F, Giordano FJ, Pfau S, Rinder HM, Katz SD (2009) Effects of recombinant human erythropoietin on platelet activation in acute myocardial infarction: results of a double-blind, placebo-controlled, randomized trial. Am Heart J 158(6):941–947PubMedCrossRefGoogle Scholar
  87. 87.
    Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van’t hof A, Jukema JW, Peels HO, Henriques JP, Ten Berg JM, Vos J, van Gilst WH, van Veldhuisen DJ (2010) A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J 31(21):2593–2600PubMedCrossRefGoogle Scholar
  88. 88.
    Jacobs J (2007) Combating cardiovascular disease with angiogenic therapy. Drug Discov Today 12(23–24):1040–1045PubMedCrossRefGoogle Scholar
  89. 89.
    Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, Annex McCluskey ER, Zioncheck TF (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72:20–32PubMedCrossRefGoogle Scholar
  90. 90.
    Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(d, l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72:13–24PubMedCrossRefGoogle Scholar
  91. 91.
    Kastrup J (2007) Clinical vascular growth factor therapy for neovascularization in patients with coronary artery disease. In: Deindl E, Kupatt C (eds) Therapeutic neovascularization—quo vadis?. Springer, Dordrecht, pp 1–22CrossRefGoogle Scholar
  92. 92.
    Udelson JE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M, Galt JR, Pike M, Yoshizawa C, Simons M (2000) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe chronic coronary artery disease. Circulation 102:1605–1610PubMedGoogle Scholar
  93. 93.
    Laham RJ, Rezaee M, Post M, Sellke FW, Braeckman RA, Hung D, Simons M (1999) Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 27(7):821–826PubMedGoogle Scholar
  94. 94.
    Wang JS (1996) Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Scand Suppl 269:1–33PubMedGoogle Scholar
  95. 95.
    Post MJ, Laham RJ, Sellke FW, Simons M (2001) Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 49:522–531PubMedCrossRefGoogle Scholar
  96. 96.
    Pérez-Ramirez B, Guziewicz N, Simler R (2010) Preformulation research: assessing protein solution behavior during early development. In: Jameel F, Hershenson S (eds) Formulation and process development strategies for manufacturing biopharmaceuticals. Wiley, HobokenGoogle Scholar
  97. 97.
    Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414PubMedCrossRefGoogle Scholar
  98. 98.
    Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10(4):307–377PubMedGoogle Scholar
  99. 99.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRefGoogle Scholar
  100. 100.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  101. 101.
    Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103PubMedCrossRefGoogle Scholar
  102. 102.
    Lee H, Chung HJ, Park TG (2007) Perspectives on: local and sustained delivery of angiogenic growth factors. J Bioact Compat Polym 22:89–114CrossRefGoogle Scholar
  103. 103.
    Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Progr Polymer Sci 32(7):669–697CrossRefGoogle Scholar
  104. 104.
    Tabata Y, Miyao M, Ozeki M, Ikada Y (2000) Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11(9):915–930PubMedCrossRefGoogle Scholar
  105. 105.
    Isner JM (2002) Myocardial gene therapy. Nature 415:234–239PubMedCrossRefGoogle Scholar
  106. 106.
    Patel ZS, Ueda H, Yamamoto M, Tabata Y, Mikos AG (2008) In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 25(10):2370–2378PubMedCrossRefGoogle Scholar
  107. 107.
    Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R (2001) Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 49:532–542PubMedCrossRefGoogle Scholar
  108. 108.
    Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF (1996) Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074–1082PubMedGoogle Scholar
  109. 109.
    Ehrbar M, Djonov V, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132PubMedCrossRefGoogle Scholar
  110. 110.
    Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939PubMedCrossRefGoogle Scholar
  111. 111.
    Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD (2004) Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25:2789–2798PubMedCrossRefGoogle Scholar
  112. 112.
    Peattie RA, Rieke ER, Hewett EM, Fisher RJ, Shu XZ, Prestwich GD (2006) Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials 27(9):1868–1875PubMedCrossRefGoogle Scholar
  113. 113.
    Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067PubMedCrossRefGoogle Scholar
  114. 114.
    Elçin YM, Dixit V, Gitnick T (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: Implications for tissue engineering and wound healing. Artif Organs 25(7):558–565PubMedCrossRefGoogle Scholar
  115. 115.
    Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96(3):463–472PubMedCrossRefGoogle Scholar
  116. 116.
    Jay SM, Saltzman WM (2009) Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 134:26–34PubMedCrossRefGoogle Scholar
  117. 117.
    Hao X, Silva EA, Månsson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Wärdell E, Brodin LA, Mooney DJ, Sylvén C (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185PubMedCrossRefGoogle Scholar
  118. 118.
    Matsusaki M, Sakaguchi H, Serizawa T, Akashi M (2007) Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed 18(6):775–783PubMedCrossRefGoogle Scholar
  119. 119.
    Silva EA, Mooney DJ (2007) Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5:590–598PubMedCrossRefGoogle Scholar
  120. 120.
    Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310PubMedCrossRefGoogle Scholar
  121. 121.
    Draget KI, Skjåk-Bræk G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55PubMedCrossRefGoogle Scholar
  122. 122.
    Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349PubMedCrossRefGoogle Scholar
  123. 123.
    Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126(1):27–33PubMedCrossRefGoogle Scholar
  124. 124.
    Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, Zhou J, Lin Q, Wang Y, Duan C, Wang C (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29(8):881–887PubMedCrossRefGoogle Scholar
  125. 125.
    King TW, Patrick CW (2000) Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(dl-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 51(3):383–390PubMedCrossRefGoogle Scholar
  126. 126.
    Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1):68–79PubMedCrossRefGoogle Scholar
  127. 127.
    Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, Vacanti JP, Whang EE (2008) The efffect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29(19):2884–2890PubMedCrossRefGoogle Scholar
  128. 128.
    Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-b1 from PLGA microsphere-based scaffolds. Biomaterials 29:1518–1525PubMedCrossRefGoogle Scholar
  129. 129.
    Ennett AB, Kaigler D, Mooney DJ (2006) Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A 79A(1):176–184CrossRefGoogle Scholar
  130. 130.
    Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C, Prósper F, Blanco-Prieto MJ (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release 147:30–37PubMedCrossRefGoogle Scholar
  131. 131.
    Tae G, Scatena M, Stayton PS, Hoffman AS (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 17(1–2):187–197PubMedCrossRefGoogle Scholar
  132. 132.
    Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30):6054–6067PubMedCrossRefGoogle Scholar
  133. 133.
    Norton LW, Tegnell E, Toporek SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26(16):3285–3297PubMedCrossRefGoogle Scholar
  134. 134.
    Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL (2007) Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 129(11):3040–3041PubMedCrossRefGoogle Scholar
  135. 135.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmökel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17:2260–2262PubMedGoogle Scholar
  136. 136.
    Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pHsensitive controlled release of fibroblast growth factor-2 from a poly(γ-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356PubMedCrossRefGoogle Scholar
  137. 137.
    Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM (2007) The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 28(16):2646–2654PubMedCrossRefGoogle Scholar
  138. 138.
    Kavanagh CA, Gorelova TA, Selezneva II, Rochev YA, Dawson KA, Gallagher WM, Gorelov AV, Keenan AK (2005) Poly(N-isopropylacrylamide) copolymer films as vehicles for the sustained delivery of proteins to vascular endothelial cells. J Biomed Mater Res A 72(1):25–35PubMedCrossRefGoogle Scholar
  139. 139.
    Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416PubMedCrossRefGoogle Scholar
  140. 140.
    Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551PubMedCrossRefGoogle Scholar
  141. 141.
    Sellke FW, Li J, Stamler A, Lopez JJ, Thomas KA, Simons M (1996) Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 120(2):182–188PubMedCrossRefGoogle Scholar
  142. 142.
    Iwakura A, Fujita M, Kataoka K, Tambara K, Sakakibara Y, Komeda M, Tabata Y (2003) Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2):93–99PubMedCrossRefGoogle Scholar
  143. 143.
    Shao ZQ, Takaji K, Katayama Y, Kunitomo R, Sakaguchi H, Lai ZF, Kawasuji M (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ J 70:471–477PubMedCrossRefGoogle Scholar
  144. 144.
    Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111; discussion 112Google Scholar
  145. 145.
    Scott RC, Rosano JM, Ivanov Z, Wang B, Chong PL, Issekutz AC, Crabbe DL, Kiani MF (2009) Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23(10):3361–3367PubMedCrossRefGoogle Scholar
  146. 146.
    Zhang J, Ding L, Zhao Y, Sun W, Chen B, Lin H, Wang X, Zhang L, Xu B, Dai J (2009) Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119:1776–1784PubMedCrossRefGoogle Scholar
  147. 147.
    Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586PubMedCrossRefGoogle Scholar
  148. 148.
    Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH (2010) Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release 146(2):207–211PubMedCrossRefGoogle Scholar
  149. 149.
    Wang T, Jiang XJ, Lin T, Ren S, Li XY, Zhang XZ, Tang QZ (2009) The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 30(25):4161–4167PubMedCrossRefGoogle Scholar
  150. 150.
    Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18PubMedCrossRefGoogle Scholar
  151. 151.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879PubMedCrossRefGoogle Scholar
  152. 152.
    Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31:189–199CrossRefGoogle Scholar
  153. 153.
    Pharmacopeia U (2008) USP 31, NF 26. Port City Press, BaltimoreGoogle Scholar
  154. 154.
    Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111PubMedCrossRefGoogle Scholar
  155. 155.
    Rask F, Dallabrida SM, Ismail NS, Amoozgar Z, Yeo Y, Rupnick MA, Radisic M (2010) Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells. J Biomed Mater Res A 95(1):105–117PubMedGoogle Scholar
  156. 156.
    Lin X, Fujita M, Kanemitsu N, Kimura Y, Tambara K, Premaratne GU, Nagasawa A, Ikeda T, Tabata Y, Komeda M (2007) Sustained-release erythropoietin ameliorates cardiac function in infarcted rat-heart without inducing polycythemia. Circ J 71(1):132–137PubMedCrossRefGoogle Scholar
  157. 157.
    Kobayashi H, Minatoguchi S, Yasuda S, Bao N, Kawamura I, Iwasa M, Yamaki T, Sumi S, Misao Y, Ushikoshi H, Nishigaki K, Takemura G, Fujiwara T, Tabata Y, Fujiwara H (2008) Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc Res 79(4):611–620PubMedCrossRefGoogle Scholar
  158. 158.
    Jeon O, Ryu SH, Chung JH, Kim BS (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105(3):249–259PubMedCrossRefGoogle Scholar
  159. 159.
    Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, Sun K (2009) Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 91(1):163–171PubMedGoogle Scholar
  160. 160.
    Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH III, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedCrossRefGoogle Scholar
  161. 161.
    Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9(1):8–16PubMedCrossRefGoogle Scholar
  162. 162.
    Sun G, Shen YI, Kusuma S, Fox-Talbot K, JS C, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106PubMedCrossRefGoogle Scholar
  163. 163.
    Dogan AK, Gümüşderelioglu M, Aksöz E (2005) Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo. J Biomed Mater Res B Appl Biomater 74(1):504–510PubMedGoogle Scholar
  164. 164.
    Norton LW, Tegnella E, Toporekb SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26:3285–3297PubMedCrossRefGoogle Scholar
  165. 165.
    Yoon JJ, Chung HJ, Park TG (2007) Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 83(3):597–605PubMedGoogle Scholar
  166. 166.
    Sharon JL, Puleo DA (2008) Immobilization of glycoproteins, such as VEGF, on biodegradable substrates. Acta Biomater 4(4):1016–1023PubMedCrossRefGoogle Scholar
  167. 167.
    Davies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P (2008) The dosage dependence of VEGF stimulation on scaffold neovascularization. Biomaterials 29(26):3531–3538PubMedCrossRefGoogle Scholar
  168. 168.
    Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527PubMedCrossRefGoogle Scholar
  169. 169.
    Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034PubMedCrossRefGoogle Scholar
  170. 170.
    Shea LD, Smiley E, Bonadio J, Mooney DJ (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17:551–554PubMedCrossRefGoogle Scholar
  171. 171.
    Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422PubMedCrossRefGoogle Scholar
  172. 172.
    Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387PubMedCrossRefGoogle Scholar
  173. 173.
    Briganti E, Spiller D, Mirtelli C, Kull S, Counoupas C, Losi P, Senesi S, Di Stefano R, Soldani G (2010) A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. J Control Release 142(1):14–21PubMedCrossRefGoogle Scholar
  174. 174.
    Peirce SM, Price RJ, Skalak TC (2004) Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1*. Am J Physiol Heart Circ Physiol 286:H918–H925PubMedCrossRefGoogle Scholar
  175. 175.
    Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95PubMedCrossRefGoogle Scholar
  176. 176.
    Kumar PS, Ramakrishna S, Saini TR, Diwan PV (2006) Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie 61(7):613–617PubMedGoogle Scholar
  177. 177.
    Bilati U, Allemann E, Doelker E (2005) Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm 59(3):375–388PubMedCrossRefGoogle Scholar
  178. 178.
    Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78(1–3):15–24PubMedCrossRefGoogle Scholar
  179. 179.
    Garbayo E, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2008) Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres. Eur J Pharm Biopharm 69:844–851PubMedCrossRefGoogle Scholar
  180. 180.
    Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRefGoogle Scholar
  181. 181.
    Sun Q, Silva E, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRefGoogle Scholar
  182. 182.
    Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Taylor WR, Guldberg RE (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:H1959–H1965PubMedCrossRefGoogle Scholar
  183. 183.
    Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS, Engelmann G, Latchman DS (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 31(1):135–146PubMedCrossRefGoogle Scholar
  184. 184.
    Lee J, Tan CY, Lee SK, Kim YH, Lee KY (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 137(3):196–202PubMedCrossRefGoogle Scholar
  185. 185.
    Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 89(2):411–423PubMedGoogle Scholar
  186. 186.
    Bittner B, Morlock M, Koll H, Winter G, Kissel T (1998) Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 45(3):295–305PubMedCrossRefGoogle Scholar
  187. 187.
    Li SH, Cai SX, Liu B, Ma KW, Wang ZP, Li XK (2006) In vitro characteristics of poly(lactic-co-glycolic acid) microspheres incorporating gelatin particles loading basic fibroblast growth factor. Acta Pharmacol Sin 27(6):754–759PubMedCrossRefGoogle Scholar
  188. 188.
    Amsden BG, Timbart L, Marecak D, Chapanian R, Tse MY, Pang SC (2010) VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate). J Control Release 145(2):109–115PubMedCrossRefGoogle Scholar
  189. 189.
    d’Angelo I, Garcia-Fuentes M, Parajo Y, Welle A, Vantus T, Horvath A, Bokonyi G, Keri G, Alonso MJ (2010) Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm 7(5):1724–1733CrossRefGoogle Scholar
  190. 190.
    Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31(35):9320–9332PubMedCrossRefGoogle Scholar
  191. 191.
    Parajó Y, D’Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ (2010) Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 17(8):596–604PubMedCrossRefGoogle Scholar
  192. 192.
    Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRefGoogle Scholar
  193. 193.
    Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRefGoogle Scholar
  194. 194.
    Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102PubMedCrossRefGoogle Scholar
  195. 195.
    Saif J, Schwarz TM, Chau DY, Henstock J, Sami P, Leicht SF, Hermann PC, Alcala S, Mulero F, Shakesheff KM, Heeschen C, Aicher A (2010) Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 30(10):1897–1904PubMedCrossRefGoogle Scholar
  196. 196.
    Chung YI, Kim SK, Lee YK, Park SJ, Cho KO, Yuk SH, Tae G, Kim YH (2010) Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release 143:282–289PubMedCrossRefGoogle Scholar
  197. 197.
    Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193PubMedCrossRefGoogle Scholar
  198. 198.
    Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X (2005) Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release 105(1–2):106–119PubMedCrossRefGoogle Scholar
  199. 199.
    Verma DD, Levchenko TS, Bernstein EA, Torchilin VP (2005) ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J Control Release 108(2–3):460–471PubMedCrossRefGoogle Scholar
  200. 200.
    Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797(3):363–368PubMedCrossRefGoogle Scholar
  201. 201.
    Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94(1):187–193PubMedCrossRefGoogle Scholar
  202. 202.
    Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH (2006) Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 7(8):2362–2367PubMedCrossRefGoogle Scholar
  203. 203.
    Firestone MA, Wolf AC, Seifert S (2003) Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules 4(6):1539–1549PubMedCrossRefGoogle Scholar
  204. 204.
    Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648PubMedCrossRefGoogle Scholar
  205. 205.
    Lee JS, Go DH, Bae JW, Lee SJ, Park KD (2007) Heparin conjugated polymeric micelle for long-terin delivery of basic fibroblast growth factor. J Control Rel 117:204–209CrossRefGoogle Scholar
  206. 206.
    Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  207. 207.
    Zhang J, Postovit LM, Wang D, Gardiner RB, Harris R, Abdul MM, Thomas AA (2009) In situ loading of basic fibroblast growth factor within porous silica nanoparticles for a prolonged release. Nanoscale Res Lett 4:1297–1302PubMedCrossRefGoogle Scholar
  208. 208.
    Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11(2):694–700PubMedCrossRefGoogle Scholar
  209. 209.
    Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR (2010) Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31(30):7805–7812PubMedCrossRefGoogle Scholar
  210. 210.
    Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100(18):1865–1871PubMedGoogle Scholar
  211. 211.
    Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289PubMedCrossRefGoogle Scholar
  212. 212.
    Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRefGoogle Scholar
  213. 213.
    Wykrzykowska JJ, Henry TD, Lesser JR, Schwartz RS (2009) Imaging myocardial angiogenesis. Nat Rev Cardiol 6(10):648–658PubMedCrossRefGoogle Scholar
  214. 214.
    Fuster V, Sanz J, Viles-Gonzalez JF, Rajagopalan S (2006) The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S2–S7PubMedCrossRefGoogle Scholar
  215. 215.
    Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. R. Formiga
    • 1
  • E. Tamayo
    • 1
  • T. Simón-Yarza
    • 1
  • B. Pelacho
    • 2
  • F. Prósper
    • 2
  • M. J. Blanco-Prieto
    • 1
  1. 1.Department of Pharmacy and Pharmaceutical Technology, School of PharmacyUniversity of NavarraPamplonaSpain
  2. 2.Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical ResearchUniversity of NavarraPamplonaSpain

Personalised recommendations