Heart Failure Reviews

, Volume 17, Issue 2, pp 251–261 | Cite as

Cystatin C: a step forward in assessing kidney function and cardiovascular risk



The cardiorenal syndrome is a clinical manifestation of the bidirectional interaction between the heart and kidneys. Evaluating renal function is an essential part of the assessment of every cardiac patient. It has become clear that serum creatinine is not an accurate enough marker of glomerular filtration rate (GFR) and should not be used to evaluate kidney dysfunction. Creatinine-based estimates of GFR are preferred, but require renal function to be stable and are not suitable when changes in kidney function occur. Cystatin C (CysC) has been the target of much interest in the search for an alternative measure of GFR. As an endogenous biomarker, CysC possesses many of the properties required of a good marker of renal function. Compared with that of creatinine, plasma concentrations of CysC are less influenced by factors other than GFR. Consequently, CysC correlates with true GFR more accurately than creatinine. Equations for estimating GFR from CysC values have also been developed, which makes values easier to interpret and facilitates the clinical use of this new marker. The use of CysC in acute kidney injury has also shown promising results. CysC has been studied as a risk marker for prognosis in cardiovascular disease. This effect is attributed to the strong impact of renal dysfunction on progressive cardiovascular disease and impaired survival. Higher levels of CysC have consistently been predictive of incident or recurrent cardiovascular events and adverse outcomes. CysC is a predictor of the development of heart failure and increased levels of CysC have an independent association with higher mortality in both chronic and acute heart failure. In conclusion, CysC appears to be an interesting marker of renal function and is useful for risk stratification in heart failure.


Cardiorenal syndrome Cystatin C Heart failure Renal function Risk marker Prognosis 


  1. 1.
    Ronco C, McCullough P, Anker SD et al (2010) Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 31(6):703–711PubMedCrossRefGoogle Scholar
  2. 2.
    Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145(4):247–254PubMedGoogle Scholar
  3. 3.
    Laterza OF, Price CP, Cystatin ScottMG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48(5):699–707PubMedGoogle Scholar
  4. 4.
    Seronie-Vivien S, Delanaye P, Pieroni L et al (2008) Cystatin C: current position and future prospects. Clin Chem Lab Med 46(12):1664–1686PubMedCrossRefGoogle Scholar
  5. 5.
    Newman DJ (2002) Cystatin C. Ann Clin Biochem 39(Pt 2): 89–104PubMedCrossRefGoogle Scholar
  6. 6.
    Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR—history, indications, and future research. Clin Biochem 38(1):1–8PubMedCrossRefGoogle Scholar
  7. 7.
    Simonsen O, Grubb A, Thysell H (1985) The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 45(2):97–101PubMedCrossRefGoogle Scholar
  8. 8.
    Knight EL, Verhave JC, Spiegelman D et al (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65(4):1416–1421PubMedCrossRefGoogle Scholar
  9. 9.
    Kottgen A, Selvin E, Stevens LA, Levey AS, Van Lente F, Coresh J (2008) Serum cystatin C in the United States: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis 51(3):385–394PubMedCrossRefGoogle Scholar
  10. 10.
    Kilic T, Oner G, Ural E et al (2009) Comparison of the long-term prognostic value of cystatin C to other indicators of renal function, markers of inflammation and systolic dysfunction among patients with acute coronary syndrome. Atherosclerosis 207(2):552–558PubMedCrossRefGoogle Scholar
  11. 11.
    Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63(5):1944–1947PubMedCrossRefGoogle Scholar
  12. 12.
    Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 49(4):680–681PubMedCrossRefGoogle Scholar
  13. 13.
    den Hollander JG, Wulkan RW, Mantel MJ, Berghout A (2003) Is cystatin C a marker of glomerular filtration rate in thyroid dysfunction? Clin Chem 49(9):1558–1559CrossRefGoogle Scholar
  14. 14.
    Risch L, Herklotz R, Blumberg A, Huber AR (2001) Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 47(11):2055–2059PubMedGoogle Scholar
  15. 15.
    Bjarnadottir M, Grubb A, Olafsson I (1995) Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand J Clin Lab Invest 55(7):617–623PubMedCrossRefGoogle Scholar
  16. 16.
    Kazama JJ, Kutsuwada K, Ataka K, Maruyama H, Gejyo F (2002) Serum cystatin C reliably detects renal dysfunction in patients with various renal diseases. Nephron 91(1):13–20PubMedCrossRefGoogle Scholar
  17. 17.
    Keller CR, Odden MC, Fried LF et al (2007) Kidney function and markers of inflammation in elderly persons without chronic kidney disease: the health, aging, and body composition study. Kidney Int 71(3):239–244PubMedCrossRefGoogle Scholar
  18. 18.
    Singh D, Whooley MA, Ix JH, Ali S, Shlipak MG (2007) Association of cystatin C and estimated GFR with inflammatory biomarkers: the Heart and Soul Study. Nephrol Dial Transplant 22(4):1087–1092PubMedCrossRefGoogle Scholar
  19. 19.
    Stenvinkel P, Ketteler M, Johnson RJ et al (2005) IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney Int 67(4):1216–1233PubMedCrossRefGoogle Scholar
  20. 20.
    Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl 74(111):S4–S9CrossRefGoogle Scholar
  21. 21.
    Stevens LA, Schmid CH, Greene T et al (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75(6):652–660PubMedCrossRefGoogle Scholar
  22. 22.
    Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS (2006) Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int 69(2):399–405PubMedCrossRefGoogle Scholar
  23. 23.
    Newman DJ, Thakkar H, Edwards RG et al (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47(1):312–318PubMedCrossRefGoogle Scholar
  24. 24.
    Kyhse-Andersen J, Schmidt C, Nordin G et al (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40(10):1921–1926PubMedGoogle Scholar
  25. 25.
    Hoek FJ, Kemperman FA, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18(10):2024–2031PubMedCrossRefGoogle Scholar
  26. 26.
    Harmoinen A, Lehtimaki T, Korpela M, Turjanmaa V, Saha H (2003) Diagnostic accuracies of plasma creatinine, cystatin C, and glomerular filtration rate calculated by the Cockcroft-Gault and Levey (MDRD) formulas. Clin Chem 49(7):1223–1225PubMedCrossRefGoogle Scholar
  27. 27.
    Coll E, Botey A, Alvarez L et al (2000) Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36(1):29–34PubMedCrossRefGoogle Scholar
  28. 28.
    Pucci L, Triscornia S, Lucchesi D et al (2007) Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients. Clin Chem 53(3):480–488PubMedCrossRefGoogle Scholar
  29. 29.
    Macisaac RJ, Tsalamandris C, Thomas MC et al (2006) Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. Diabetologia 49(7):1686–1689PubMedCrossRefGoogle Scholar
  30. 30.
    Spanaus KS, Kollerits B, Ritz E et al (2010) Serum creatinine, cystatin C, and beta-trace protein in diagnostic staging and predicting progression of primary nondiabetic chronic kidney disease. Clin Chem 56(5):740–749PubMedCrossRefGoogle Scholar
  31. 31.
    Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40(2):221–226PubMedCrossRefGoogle Scholar
  32. 32.
    Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis. Clin Biochem 40(5–6):383–391PubMedCrossRefGoogle Scholar
  33. 33.
    Tan GD, Lewis AV, James TJ, Altmann P, Taylor RP, Levy JC (2002) Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 25(11):2004–2009PubMedCrossRefGoogle Scholar
  34. 34.
    Cherney DZ, Sochett EB, Dekker MG, Perkins BA (2010) Ability of cystatin C to detect acute changes in glomerular filtration rate provoked by hyperglycaemia in uncomplicated Type 1 diabetes. Diabet Med 27(12):1358–1365PubMedCrossRefGoogle Scholar
  35. 35.
    Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2011) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6(2):274–280PubMedCrossRefGoogle Scholar
  36. 36.
    Ognibene A, Mannucci E, Caldini A et al (2006) Cystatin C reference values and aging. Clin Biochem 39(6):658–661PubMedCrossRefGoogle Scholar
  37. 37.
    Odden MC, Tager IB, Gansevoort RT et al (2010) Age and cystatin C in healthy adults: a collaborative study. Nephrol Dial Transplant 25(2):463–469PubMedCrossRefGoogle Scholar
  38. 38.
    Weinert LS, Prates AB, do Amaral FB, Vaccaro MZ, Camargo JL, Silveiro SP (2010) Gender does not influence cystatin C concentrations in healthy volunteers. Clin Chem Lab Med 48(3):405–408PubMedGoogle Scholar
  39. 39.
    Herget-Rosenthal S, Marggraf G, Husing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122PubMedCrossRefGoogle Scholar
  40. 40.
    Grubb A, Nyman U, Bjork J et al (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 51(8):1420–1431PubMedCrossRefGoogle Scholar
  41. 41.
    Stevens LA, Coresh J, Schmid CH et al (2008) Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3, 418 individuals with CKD. Am J Kidney Dis 51(3):395–406PubMedCrossRefGoogle Scholar
  42. 42.
    Macdonald J, Marcora S, Jibani M et al (2006) GFR estimation using cystatin C is not independent of body composition. Am J Kidney Dis 48(5):712–719PubMedCrossRefGoogle Scholar
  43. 43.
    Ma YC, Zuo L, Chen JH et al (2007) Improved GFR estimation by combined creatinine and cystatin C measurements. Kidney Int 72(12):1535–1542PubMedCrossRefGoogle Scholar
  44. 44.
    Madero M, Sarnak MJ, Stevens LA (2006) Serum cystatin C as a marker of glomerular filtration rate. Curr Opin Nephrol Hypertens 15(6):610–616PubMedCrossRefGoogle Scholar
  45. 45.
    Eriksen BO, Mathisen UD, Melsom T et al (2010) Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney Int 78(12):1305–1311PubMedCrossRefGoogle Scholar
  46. 46.
    Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivela SL, Irjala K (2004) Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin C. J Intern Med 256(1):70–78PubMedCrossRefGoogle Scholar
  47. 47.
    O’Riordan SE, Webb MC, Stowe HJ et al (2003) Cystatin C improves the detection of mild renal dysfunction in older patients. Ann Clin Biochem 40(Pt 6):648–655PubMedCrossRefGoogle Scholar
  48. 48.
    Fliser D, Ritz E (2001) Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 37(1):79–83PubMedGoogle Scholar
  49. 49.
    Perkins BA, Nelson RG, Ostrander BE et al (2005) Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J Am Soc Nephrol 16(5):1404–1412PubMedCrossRefGoogle Scholar
  50. 50.
    Shlipak MG, Praught ML, Sarnak MJ (2006) Update on cystatin C: new insights into the importance of mild kidney dysfunction. Curr Opin Nephrol Hypertens 15(3):270–275PubMedCrossRefGoogle Scholar
  51. 51.
    Haase-Fielitz A, Bellomo R, Devarajan P et al (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study. Crit Care Med 37(2):553–560PubMedCrossRefGoogle Scholar
  52. 52.
    Nejat M, Pickering JW, Walker RJ, Endre ZH (2010) Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant 25(10):3283–3289PubMedCrossRefGoogle Scholar
  53. 53.
    Ristikankare A, Poyhia R, Kuitunen A et al (2010) Serum cystatin C in elderly cardiac surgery patients. Ann Thorac Surg 89(3):689–694PubMedCrossRefGoogle Scholar
  54. 54.
    Bell M, Granath F, Martensson J et al (2009) Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol Dial Transplant 24(10):3096–3102PubMedCrossRefGoogle Scholar
  55. 55.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute dialysis quality initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care 8(4):R204–R212PubMedCrossRefGoogle Scholar
  56. 56.
    Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31PubMedCrossRefGoogle Scholar
  57. 57.
    Villa P, Jimenez M, Soriano MC, Manzanares J, Casasnovas P (2005) Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care 9(2):R139–R143PubMedCrossRefGoogle Scholar
  58. 58.
    Perianayagam MC, Seabra VF, Tighiouart H, Liangos O, Jaber BL (2009) Serum cystatin C for prediction of dialysis requirement or death in acute kidney injury: a comparative study. Am J Kidney Dis 54(6):1025–1033PubMedCrossRefGoogle Scholar
  59. 59.
    Wald R, Liangos O, Perianayagam MC et al (2010) Plasma cystatin C and acute kidney injury after cardiopulmonary bypass. Clin J Am Soc Nephrol 5(8):1373–1379PubMedCrossRefGoogle Scholar
  60. 60.
    Soto K, Coelho S, Rodrigues B et al (2010) Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol 5(10):1745–1754PubMedCrossRefGoogle Scholar
  61. 61.
    Lassus JP, Nieminen MS, Peuhkurinen K et al (2010) Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome. Eur Heart J 31(22):2791–2798PubMedCrossRefGoogle Scholar
  62. 62.
    Briguori C, Visconti G, Rivera NV et al (2010) Cystatin C and contrast-induced acute kidney injury. Circulation 121(19):2117–2122PubMedCrossRefGoogle Scholar
  63. 63.
    Malyszko J, Bachorzewska-Gajewska H, Poniatowski B, Malyszko JS, Dobrzycki S (2009) Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease. Ren Fail 31(10):910–919PubMedCrossRefGoogle Scholar
  64. 64.
    Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24(11):3263–3265PubMedCrossRefGoogle Scholar
  65. 65.
    Premaratne E, MacIsaac RJ, Finch S, Panagiotopoulos S, Ekinci E, Jerums G (2008) Serial measurements of cystatin C are more accurate than creatinine-based methods in detecting declining renal function in type 1 diabetes. Diabetes Care 31(5):971–973PubMedCrossRefGoogle Scholar
  66. 66.
    Hossain MA, Emara M, El Moselhi H, Shoker A (2009) Comparing measures of cystatin C in human sera by three methods. Am J Nephrol 29(5):381–391PubMedCrossRefGoogle Scholar
  67. 67.
    Grubb A, Blirup-Jensen S, Lindstrom V et al (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48(11):1619–1621PubMedCrossRefGoogle Scholar
  68. 68.
    Shlipak MG, Sarnak MJ, Katz R et al (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352(20):2049–2060PubMedCrossRefGoogle Scholar
  69. 69.
    Shlipak MG, Wassel Fyr CL, Chertow GM et al (2006) Cystatin C and mortality risk in the elderly: the health, aging, and body composition study. J Am Soc Nephrol 17(1):254–261PubMedCrossRefGoogle Scholar
  70. 70.
    Deo R, Fyr CL, Fried LF et al (2008) Kidney dysfunction and fatal cardiovascular disease—an association independent of atherosclerotic events: results from the Health, Aging, and Body Composition (Health ABC) study. Am Heart J 155(1):62–68PubMedCrossRefGoogle Scholar
  71. 71.
    Shlipak MG, Katz R, Sarnak MJ et al (2006) Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann Intern Med 145(4):237–246PubMedGoogle Scholar
  72. 72.
    Ix JH, Shlipak MG, Chertow GM, Whooley MA (2007) Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the heart and soul study. Circulation 115(2):173–179PubMedCrossRefGoogle Scholar
  73. 73.
    Koenig W, Twardella D, Brenner H, Rothenbacher D (2005) Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem 51(2):321–327PubMedCrossRefGoogle Scholar
  74. 74.
    Keller T, Messow CM, Lubos E et al (2009) Cystatin C and cardiovascular mortality in patients with coronary artery disease and normal or mildly reduced kidney function: results from the AtheroGene study. Eur Heart J 30(3):314–320PubMedCrossRefGoogle Scholar
  75. 75.
    Muntner P, Mann D, Winston J, Bansilal S, Farkouh ME (2008) Serum cystatin C and increased coronary heart disease prevalence in US adults without chronic kidney disease. Am J Cardiol 102(1):54–57PubMedCrossRefGoogle Scholar
  76. 76.
    Jernberg T, Lindahl B, James S, Larsson A, Hansson LO, Wallentin L (2004) Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation 110(16):2342–2348PubMedCrossRefGoogle Scholar
  77. 77.
    Windhausen F, Hirsch A, Fischer J et al (2009) Cystatin C for enhancement of risk stratification in non-ST elevation acute coronary syndrome patients with an increased troponin T. Clin Chem 55(6):1118–1125PubMedCrossRefGoogle Scholar
  78. 78.
    Sarnak MJ, Katz R, Stehman-Breen CO et al (2005) Cystatin C concentration as a risk factor for heart failure in older adults. Ann Intern Med 142(7):497–505PubMedGoogle Scholar
  79. 79.
    Djousse L, Kurth T, Gaziano JM (2008) Cystatin C and risk of heart failure in the Physicians’ Health Study (PHS). Am Heart J 155(1):82–86PubMedCrossRefGoogle Scholar
  80. 80.
    Moran A, Katz R, Smith NL et al (2008) Cystatin C concentration as a predictor of systolic and diastolic heart failure. J Card Fail 14(1):19–26PubMedCrossRefGoogle Scholar
  81. 81.
    Ix JH, Shlipak MG, Chertow GM, Ali S, Schiller NB, Whooley MA (2006) Cystatin C, left ventricular hypertrophy, and diastolic dysfunction: data from the Heart and Soul Study. J Card Fail 12(8):601–607PubMedCrossRefGoogle Scholar
  82. 82.
    Moran A, Katz R, Jenny NS et al (2008) Left ventricular hypertrophy in mild and moderate reduction in kidney function determined using cardiac magnetic resonance imaging and cystatin C: the multi-ethnic study of atherosclerosis (MESA). Am J Kidney Dis 52(5):839–848PubMedCrossRefGoogle Scholar
  83. 83.
    Patel PC, Ayers CR, Murphy SA et al (2009) Association of cystatin C with left ventricular structure and function: the Dallas heart study. Circ Heart Fail 2(2):98–104PubMedCrossRefGoogle Scholar
  84. 84.
    Tang WH, Van Lente F, Shrestha K et al (2008) Impact of myocardial function on cystatin C measurements in chronic systolic heart failure. J Card Fail 14(5):394–399PubMedCrossRefGoogle Scholar
  85. 85.
    Arimoto T, Takeishi Y, Niizeki T et al (2005) Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail 11(8):595–601PubMedCrossRefGoogle Scholar
  86. 86.
    Shlipak MG, Katz R, Fried LF et al (2005) Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol 45(2):268–271PubMedCrossRefGoogle Scholar
  87. 87.
    Alehagen U, Dahlstrom U, Lindahl TL (2009) Cystatin C and NT-proBNP, a powerful combination of biomarkers for predicting cardiovascular mortality in elderly patients with heart failure: results from a 10-year study in primary care. Eur J Heart Fail 11(4):354–360PubMedCrossRefGoogle Scholar
  88. 88.
    Lassus J, Harjola VP, Sund R et al (2007) Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J 28(15):1841–1847PubMedCrossRefGoogle Scholar
  89. 89.
    Campbell CY, Clarke W, Park H, Haq N, Barone BB, Brotman DJ (2009) Usefulness of cystatin C and prognosis following admission for acute heart failure. Am J Cardiol 104(3):389–392PubMedCrossRefGoogle Scholar
  90. 90.
    Manzano-Fernandez S, Boronat-Garcia M, Albaladejo-Oton MD et al (2009) Complementary prognostic value of cystatin C, N-terminal pro-B-type natriuretic peptide and cardiac troponin T in patients with acute heart failure. Am J Cardiol 103(12):1753–1759PubMedCrossRefGoogle Scholar
  91. 91.
    Naruse H, Ishii J, Kawai T et al (2009) Cystatin C in acute heart failure without advanced renal impairment. Am J Med 122(6):566–573PubMedCrossRefGoogle Scholar
  92. 92.
    Luc G, Bard JM, Lesueur C et al (2006) Plasma cystatin-C and development of coronary heart disease: the PRIME study. Atherosclerosis 185(2):375–380PubMedCrossRefGoogle Scholar
  93. 93.
    Wu CK, Lin JW, Caffrey JL, Chang MH, Hwang JJ, Lin YS (2010) Cystatin C and long-term mortality among subjects with normal creatinine-based estimated glomerular filtration rates: NHANES III (Third National Health and Nutrition Examination Survey). J Am Coll Cardiol 56(23):1930–1936PubMedCrossRefGoogle Scholar
  94. 94.
    Menon V, Shlipak MG, Wang X et al (2007) Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann Intern Med 147(1):19–27PubMedGoogle Scholar
  95. 95.
    Shlipak MG, Katz R, Kestenbaum B et al (2009) Rate of kidney function decline in older adults: a comparison using creatinine and cystatin C. Am J Nephrol 30(3):171–178PubMedCrossRefGoogle Scholar
  96. 96.
    Rifkin DE, Shlipak MG, Katz R et al (2008) Rapid kidney function decline and mortality risk in older adults. Arch Intern Med 168(20):2212–2218PubMedCrossRefGoogle Scholar
  97. 97.
    Damman K, Voors AA, Navis G, van Veldhuisen DJ, Hillege HL Current and novel renal biomarkers in heart failure (under review)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineHelsinki University Central HospitalHelsinkiFinland
  2. 2.Division of Emergency Care, Department of MedicineHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations