Skip to main content
Log in

The role of cardiac magnetic resonance imaging in the assessment of non-ischemic cardiomyopathy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiovascular magnetic resonance imaging (CMR) plays an increasing role in the assessment of patients with various cardiovascular disorders. Given its enhanced spatial resolution, improved tissue characterization, and lack of ionizing radiation, it has become the test of choice in the evaluation of patients with new-onset cardiomyopathy of unknown etiology. In this paper, we will review the role of CMR in the evaluation of patients with various types of non-ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chuang ML et al (2000) Three-dimensional echocardiographic measurement of left ventricular mass: comparison with magnetic resonance imaging and two-dimensional echocardiographic determinations in man. Int J Card Imaging 16(5):347–357

    Article  PubMed  CAS  Google Scholar 

  2. Klem I et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47(8):1630–1638

    Article  PubMed  Google Scholar 

  3. Lima JA (2003) Myocardial viability assessment by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 42(5):902–904

    Article  PubMed  Google Scholar 

  4. Amado LC et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389

    Article  PubMed  Google Scholar 

  5. Kim RJ et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  6. Kim HW, Farzaneh-Far A, Kim RJ (2009) Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol 55(1):1–16

    Article  PubMed  Google Scholar 

  7. Kim RJ et al (2008) Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117(5):629–637

    Article  PubMed  Google Scholar 

  8. Mahrholdt H et al (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26(15):1461–1474

    Article  PubMed  Google Scholar 

  9. McCrohon JA et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108(1):54–59

    Article  PubMed  CAS  Google Scholar 

  10. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018

    Article  PubMed  Google Scholar 

  11. Casolo G et al (2006) Identification of the ischemic etiology of heart failure by cardiovascular magnetic resonance imaging: diagnostic accuracy of late gadolinium enhancement. Am Heart J 151(1):101–108

    Article  PubMed  Google Scholar 

  12. Soriano CJ et al (2005) Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J Am Coll Cardiol 45(5):743–748

    Article  PubMed  Google Scholar 

  13. Roberts WC, Siegel RJ, McManus BM (1987) Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients. Am J Cardiol 60(16):1340–1355

    Article  PubMed  CAS  Google Scholar 

  14. Matoh F et al (2007) Usefulness of delayed enhancement magnetic resonance imaging to differentiate dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy. J Card Fail 13(5):372–379

    Article  PubMed  Google Scholar 

  15. Assomull RG et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985

    Article  PubMed  Google Scholar 

  16. Bogun FM et al (2009) Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy: utility for identifying the ventricular arrhythmia substrate. J Am Coll Cardiol 53(13):1138–1145

    Article  PubMed  Google Scholar 

  17. Duarte S, Bogaert J (2010) The role of cardiac magnetic resonance in hypertrophic cardiomyopathy. Rev Port Cardiol 29(1):79–93

    PubMed  Google Scholar 

  18. Amano Y, Takayama M, Kumita S (2009) Cardiac magnetic resonance imaging findings are useful for differentiating between hypertrophic obstructive cardiomyopathy and aortic valve stenosis in elderly patients. J Comput Assist Tomogr 33(3):354–358

    Article  PubMed  Google Scholar 

  19. Rubinshtein R et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3(1):51–58

    Article  PubMed  Google Scholar 

  20. Ho CY et al (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563

    Article  PubMed  CAS  Google Scholar 

  21. Germans T et al (2010) How do hypertrophic cardiomyopathy mutations affect myocardial function in carriers with normal wall thickness? Assessment with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:13

    Article  PubMed  Google Scholar 

  22. Choi DS et al (2008) Extent of late gadolinium enhancement in cardiovascular magnetic resonance and its relation with left ventricular diastolic function in patients with hypertrophic cardiomyopathy. Circ J 72(9):1449–1453

    Article  PubMed  Google Scholar 

  23. Maron MS et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail 1(3):184–191

    Article  PubMed  Google Scholar 

  24. Satoh H et al (2009) Delayed enhancement on cardiac magnetic resonance and clinical, morphological, and electrocardiographical features in hypertrophic cardiomyopathy. J Card Fail 15(5):419–427

    Article  PubMed  Google Scholar 

  25. Kwon DH et al (2008) Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging 24(6):617–625

    Article  PubMed  Google Scholar 

  26. Adabag AS et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51(14):1369–1374

    Article  PubMed  Google Scholar 

  27. Bruder O et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–887

    Article  PubMed  Google Scholar 

  28. Salerno M, Kramer CM (2010) Prognosis in hypertrophic cardiomyopathy with contrast-enhanced cardiac magnetic resonance the future looks bright. J Am Coll Cardiol 56(11):888–889

    Article  PubMed  Google Scholar 

  29. Di Salvo G et al (2010) Non sustained ventricular tachycardia in hypertrophic cardiomyopathy and new ultrasonic derived parameters. J Am Soc Echocardiogr 23(6):581–590

    Article  PubMed  Google Scholar 

  30. Leonardi S et al (2009) Usefulness of cardiac magnetic resonance in assessing the risk of ventricular arrhythmias and sudden death in patients with hypertrophic cardiomyopathy. Eur Heart J 30(16):2003–2010

    Article  PubMed  Google Scholar 

  31. Fluechter S et al (2010) Extent of late gadolinium enhancement detected by cardiovascular magnetic resonance correlates with the inducibility of ventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 12:30

    Article  PubMed  Google Scholar 

  32. Pujadas S et al (2010) Correlation between myocardial fibrosis and the occurrence of atrial fibrillation in hypertrophic cardiomyopathy: a cardiac magnetic resonance imaging study. Eur J Radiol 75(2):e88–e91

    Article  PubMed  CAS  Google Scholar 

  33. Abdel-Aty H et al (2008) Abnormalities in T2-weighted cardiovascular magnetic resonance images of hypertrophic cardiomyopathy: regional distribution and relation to late gadolinium enhancement and severity of hypertrophy. J Magn Reson Imaging 28(1):242–245

    Article  PubMed  Google Scholar 

  34. Petersen SE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115(18):2418–2425

    Article  PubMed  Google Scholar 

  35. Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343(19):1388–1398

    Article  PubMed  CAS  Google Scholar 

  36. Nelson KH, Li T, Afonso L (2009) Diagnostic approach and role of MRI in the assessment of acute myocarditis. Cardiol Rev 17(1):24–30

    Article  PubMed  Google Scholar 

  37. Codreanu A et al (2007) Detection of myocarditis by contrast-enhanced MRI in patients presenting with acute coronary syndrome but no coronary stenosis. J Magn Reson Imaging 25(5):957–964

    Article  PubMed  Google Scholar 

  38. Roditi GH, Hartnell GG, Cohen MC (2000) MRI changes in myocarditis–evaluation with spin echo, cine MR angiography and contrast enhanced spin echo imaging. Clin Radiol 55(10):752–758

    Article  PubMed  CAS  Google Scholar 

  39. Zagrosek A et al (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2(2):131–138

    Article  PubMed  Google Scholar 

  40. Zagrosek A et al (2008) Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis–a CMR study. J Cardiovasc Magn Reson 10:19

    Article  PubMed  Google Scholar 

  41. Yelgec NS et al (2007) Value of MRI in patients with a clinical suspicion of acute myocarditis. Eur Radiol 17(9):2211–2217

    Article  PubMed  Google Scholar 

  42. Friedrich MG et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487

    Article  PubMed  Google Scholar 

  43. Goitein O et al (2009) Acute myocarditis: noninvasive evaluation with cardiac MRI and transthoracic echocardiography. AJR Am J Roentgenol 192(1):254–258

    Article  PubMed  Google Scholar 

  44. Mahrholdt H et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114(15):1581–1590

    Article  PubMed  Google Scholar 

  45. Abdel-Aty H, Simonetti O, Friedrich MG (2007) T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 26(3):452–459

    Article  PubMed  Google Scholar 

  46. Abdel-Aty H et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45(11):1815–1822

    Article  PubMed  Google Scholar 

  47. Assomull RG et al (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur Heart J 28(10):1242–1249

    Article  PubMed  CAS  Google Scholar 

  48. Thomas B, Ramos R, Tavares NJ (2009) Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 6(11): e1; author reply e1–2

  49. Ferrari VA, Scott CH, Basso C (2005) Arrhythmogenic right ventricular dysplasia/cardiomyopathy. Curr Cardiol Rep 7(1):70–75

    Article  PubMed  Google Scholar 

  50. Corrado D et al (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30(6):1512–1520

    Article  PubMed  CAS  Google Scholar 

  51. Barahona-Dussault C et al (2010) Role of genetic testing in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Clin Genet 77(1):37–48

    Article  PubMed  CAS  Google Scholar 

  52. Cox MG et al (2009) New ECG criteria in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Arrhythm Electrophysiol 2(5):524–530

    Article  PubMed  Google Scholar 

  53. Jain R et al (2009) Electrocardiographic features of arrhythmogenic right ventricular dysplasia. Circulation 120(6):477–487

    Article  PubMed  Google Scholar 

  54. Barrios V, Escobar C, Calderon A (2009) Arrhythmogenic right ventricular dysplasia. J Am Coll Cardiol 53(3):295

    Article  PubMed  Google Scholar 

  55. Wu S et al (2009) Epsilon wave in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Pacing Clin Electrophysiol 32(1):59–63

    Article  PubMed  CAS  Google Scholar 

  56. Marcus FI et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121(13):1533–1541

    Article  PubMed  Google Scholar 

  57. Jain A et al (2008) Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson 10:32

    Article  PubMed  Google Scholar 

  58. Sen-Chowdhry S et al (2006) Cardiovascular magnetic resonance in arrhythmogenic right ventricular cardiomyopathy revisited: comparison with task force criteria and genotype. J Am Coll Cardiol 48(10):2132–2140

    Article  PubMed  Google Scholar 

  59. Tandri H et al (2006) Magnetic resonance imaging of arrhythmogenic right ventricular dysplasia: sensitivity, specificity, and observer variability of fat detection versus functional analysis of the right ventricle. J Am Coll Cardiol 48(11):2277–2284

    Article  PubMed  Google Scholar 

  60. Tandri H et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45(1):98–103

    Article  PubMed  Google Scholar 

  61. Bomma C et al (2004) Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Cardiovasc Electrophysiol 15(3):300–306

    Article  PubMed  Google Scholar 

  62. Roberts WC et al (2010) Some previously neglected examples of arrhythmogenic right ventricular dysplasia/cardiomyopathy and frequency of its various reported manifestations. Am J Cardiol 106(2):268–274

    Article  PubMed  Google Scholar 

  63. Falk RH (2005) Diagnosis and management of the cardiac amyloidoses. Circulation 112(13):2047–2060

    Article  PubMed  Google Scholar 

  64. Kwong RY, Falk RH (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):122–124

    Article  PubMed  Google Scholar 

  65. Vogelsberg H et al (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 51(10):1022–1030

    Article  PubMed  Google Scholar 

  66. Thomson LEJ (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: diagnostic value of a typical pattern of late gadolinium enhancement. J Am Coll Cardiol 51(10):1031–1032

    Article  PubMed  Google Scholar 

  67. Bucciarelli-Ducci C et al (2007) Value of cardiovascular magnetic resonance for determining cardiac involvement in systemic amyloidosis. Eur Heart J 28(10):1186

    Article  PubMed  Google Scholar 

  68. Selvanayagam JB et al (2007) Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol 50(22):2101–2110

    Article  PubMed  CAS  Google Scholar 

  69. Perugini E et al (2006) Non-invasive evaluation of the myocardial substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance. Heart 92(3):343–349

    Article  PubMed  CAS  Google Scholar 

  70. Maceira AM et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193

    Article  PubMed  Google Scholar 

  71. Kwong RY, Falk RH (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):122–124

    Article  PubMed  Google Scholar 

  72. Syed IS et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. J Am Coll Cardiol Img 3(2):155–164

    Google Scholar 

  73. Maceira AM et al (2008) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 10:54

    Article  PubMed  Google Scholar 

  74. Ruberg FL et al (2009) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 103(4):544–549

    Article  PubMed  Google Scholar 

  75. Hiraga H, Yuwai K, Hiroe M (1993) Guideline for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary diseases from the Japanese Ministry of Health and Welfare. Japanese Ministry of Health and Welfare, Tokyo, pp 23–24

    Google Scholar 

  76. Smedema JP et al (2005) The additional value of gadolinium-enhanced MRI to standard assessment for cardiac involvement in patients with pulmonary sarcoidosis. Chest 128(3):1629–1637

    Article  PubMed  Google Scholar 

  77. Hunold P et al (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184(5):1420–1426

    PubMed  Google Scholar 

  78. Tadamura E et al (2005) Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging. AJR Am J Roentgenol 185(1):110–115

    PubMed  Google Scholar 

  79. Vignaux O (2005) Cardiac sarcoidosis: spectrum of MRI features. AJR Am J Roentgenol 184(1):249–254

    PubMed  Google Scholar 

  80. Kiuchi S et al (2007) Usefulness of late gadolinium enhancement combined with MRI and 67-Ga scintigraphy in the diagnosis of cardiac sarcoidosis and disease activity evaluation. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 23(2):237–241

    Article  Google Scholar 

  81. Patel MR et al (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120(20):1969–1977

    Article  PubMed  Google Scholar 

  82. Finsterer J (2010) Left ventricular non-compaction and its cardiac and neurologic implications. Heart Fail Rev 15(6):589–603

    Article  PubMed  Google Scholar 

  83. Madan S et al (2010) Left ventricular non-compaction on MRI in a patient with 22q11.2 distal deletion. Am J Med Genet A 152A(5):1295–1299

    Article  PubMed  Google Scholar 

  84. Luedde M et al (2010) Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res 86(3):452–460

    Article  PubMed  CAS  Google Scholar 

  85. Yousef ZR et al (2009) Left ventricular non-compaction: clinical features and cardiovascular magnetic resonance imaging. BMC Cardiovasc Disord 9:37

    Article  PubMed  Google Scholar 

  86. Jenni R et al (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86(6):666–671

    Article  PubMed  CAS  Google Scholar 

  87. Varnava AM (2001) Isolated left ventricular non-compaction: a distinct cardiomyopathy? Heart 86(6):599–600

    Article  PubMed  CAS  Google Scholar 

  88. Kohli SK et al (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29(1):89–95

    Article  PubMed  Google Scholar 

  89. Duncan RF, Brown MA, Worthley SG (2008) Increasing identification of isolated left ventricular non-compaction with cardiovascular magnetic resonance: a mini case series highlighting variable clinical presentation. Heart Lung Circ 17(1):9–13

    Article  PubMed  Google Scholar 

  90. Thuny F et al (2010) Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis 103(3):150–159

    Article  PubMed  Google Scholar 

  91. Jacquier A et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31(9):1098–1104

    Article  PubMed  Google Scholar 

  92. Noetzli LJ et al (2009) Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 114(19):4021–4026

    Article  PubMed  CAS  Google Scholar 

  93. Wood JC et al (2004) Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 103(5):1934–1936

    Article  PubMed  CAS  Google Scholar 

  94. Westwood M et al (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18(1):33–39

    Article  PubMed  Google Scholar 

  95. Kirk P et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120(20):1961–1968

    Article  PubMed  CAS  Google Scholar 

  96. Kirk P et al (2010) International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging 32(2):315–319

    Article  PubMed  Google Scholar 

  97. Anderson LJ et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22(23):2171–2179

    Article  PubMed  CAS  Google Scholar 

  98. Anderson LJ et al (2002) Comparison of effects of oral deferiprone and subcutaneous desferrioxamine on myocardial iron concentrations and ventricular function in beta-thalassaemia. Lancet 360(9332):516–520

    Article  PubMed  CAS  Google Scholar 

  99. Tanner MA et al (2007) A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation 115(14):1876–1884

    Article  PubMed  CAS  Google Scholar 

  100. Clarke JT (2007) Narrative review: fabry disease. Ann Intern Med 146(6):425–433

    PubMed  Google Scholar 

  101. Karamitsos TD et al (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54(15):1407–1424

    Article  PubMed  Google Scholar 

  102. Sachdev B et al (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105(12):1407–1411

    Article  PubMed  CAS  Google Scholar 

  103. Frustaci A et al (2001) Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy. N Engl J Med 345(1):25–32

    Article  PubMed  CAS  Google Scholar 

  104. Kanjanauthai S, Ananthasubramaniam K (2007) Integral role of cardiovascular magnetic resonance imaging in the diagnostic workup of suspected takotsubo cardiomyopathy: avoiding misdiagnosis. Cardiol J 14(6):592–594

    PubMed  Google Scholar 

  105. Wittstein IS et al (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352(6):539–548

    Article  PubMed  CAS  Google Scholar 

  106. Eitel I et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29(21):2651–2659

    Article  PubMed  Google Scholar 

  107. Abdel-Aty H, Cocker M, Friedrich MG (2009) Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from T2-weighted cardiovascular magnetic resonance. Int J Cardiol 132(2):291–293

    Article  PubMed  Google Scholar 

  108. Gerbaud E et al (2008) MRI for the diagnosis of left ventricular apical ballooning syndrome (LVABS). Eur Radiol 18(5):947–954

    Article  PubMed  Google Scholar 

  109. Singh V et al (2007) Cardiac MRI documented left ventricular thrombus complicating acute takotsubo syndrome: an uncommon dilemma. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 23(5):591–593

    Article  Google Scholar 

  110. Fernandez-Perez GC et al (2010) Takotsubo cardiomyopathy: assessment with cardiac MRI. Am J Roentgenol 195(2):W139–W145

    Article  Google Scholar 

  111. Leurent G et al (2009) Cardiac MRI studies of transient left ventricular apical ballooning syndrome (takotsubo cardiomyopathy): a systematic review. Int J Cardiol 135(2):146–149

    Article  PubMed  Google Scholar 

  112. Murphy KJ, Brunberg JA (1997) Adult claustrophobia, anxiety and sedation in MRI. Magn Reson Imaging 15(1):51–54

    Article  PubMed  CAS  Google Scholar 

  113. Dantendorfer K et al (1991) Claustrophobia in MRI scanners. Lancet 338(8769):761–762

    Article  PubMed  CAS  Google Scholar 

  114. Phelps LA (1990) MRI and claustrophobia. Am Fam Physician 42(4):930

    PubMed  CAS  Google Scholar 

  115. Gimbel JR (2010) The safety of MRI scanning of pacemakers and ICDs: what are the critical elements of safe scanning? Ask me again at 10, 000. Europace 12(7):915–917

    Article  PubMed  Google Scholar 

  116. Mollerus M et al (2009) Ectopy in patients with permanent pacemakers and implantable cardioverter-defibrillators undergoing an MRI scan. Pacing Clin Electrophysiol 32(6):772–778

    Article  PubMed  Google Scholar 

  117. Pulver AF et al (2009) Safety and imaging quality of MRI in pediatric and adult congenital heart disease patients with pacemakers. Pacing Clin Electrophysiol 32(4):450–456

    Article  PubMed  Google Scholar 

  118. Cowper SE (2005) Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy. Am J Kidney Dis 46(4):763–765

    Article  PubMed  Google Scholar 

  119. Daram SR, Cortese CM, Bastani B (2005) Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: report of a new case with literature review. Am J Kidney Dis 46(4):754–759

    Article  PubMed  Google Scholar 

  120. Perez-Rodriguez J et al (2009) Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment–report of 33 cases. Radiology 250(2):371–377

    Article  PubMed  Google Scholar 

  121. Runge VM (2009) Gadolinium and nephrogenic systemic fibrosis. AJR Am J Roentgenol 192(4):W195–W196; discussion W197

    Google Scholar 

  122. Perazella MA, Rodby RA (2007) Gadolinium-induced nephrogenic systemic fibrosis in patients with kidney disease. Am J Med 120(7):561–562

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Mallah, M.H., Shareef, M.N. The role of cardiac magnetic resonance imaging in the assessment of non-ischemic cardiomyopathy. Heart Fail Rev 16, 369–380 (2011). https://doi.org/10.1007/s10741-010-9221-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9221-3

Keywords

Navigation