Heart Failure Reviews

, Volume 17, Issue 1, pp 35–43 | Cite as

Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure

  • Satyam Sarma
  • Hossein Ardehali
  • Mihai Gheorghiade


The prognosis for patients diagnosed with heart failure has significantly improved over the past three decades; however, the disease still confers a high degree of morbidity and mortality. Current treatments for chronic heart failure have focused primarily on blocking neurohormonal signaling and optimizing hemodynamic parameters. Although significant resources have been devoted toward the development of new pharmaceutical therapies for heart failure, few new drugs have been designed to target myocardial metabolic pathways despite growing evidence that on a fundamental level chronic heart failure can be characterized as an imbalance between myocardial energy demand and supply. Disruptions in myocardial energy pathways are evident as the myocardium is unable to generate sufficient amounts of ATP with advancing stages of heart failure. Down-regulation of fatty acid oxidation likely contributes to the phenotype of the “energy starved” heart. Fibrates are small molecule agonists of PPARα pathways that have been used to treat dyslipidemia. Although never used therapeutically in clinical heart failure, PPARα agonists have been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis and hypertrophy in animal models of heart failure. In light of their excellent clinical safety profile, PPARα agonists may improve outcomes in patients suffering from systolic heart failure by augmenting myocardial ATP production in addition to targeting maladaptive hypertrophic pathways.


PPAR alpha Heart failure Myocardial metabolism Fatty acid metabolism Glucose metabolism 


  1. 1.
    The SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–301CrossRefGoogle Scholar
  2. 2.
    Lechat P, Brunhuber KW, Hofmann R, Osterziel KJ (1999) The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomized trial. Lancet 353(9146):9–13CrossRefGoogle Scholar
  3. 3.
    Moss AJ, Hall WJ, Cannom DS et al (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. NEJM 361(14):1329–1338PubMedCrossRefGoogle Scholar
  4. 4.
    American Heart Association (2005) Heart disease and stroke statistics: 2005 update. American Heart Association, DallasGoogle Scholar
  5. 5.
    American Heart Association (2008) Heart disease and stroke statistics: 2008 update. American Heart Association, DallasGoogle Scholar
  6. 6.
    Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, Thakkar R, Padley RJ, Põder P, Kivikko M (2007) Levosimendan vs. Dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297:1883–1891PubMedCrossRefGoogle Scholar
  7. 7.
    Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297:1319–1331PubMedCrossRefGoogle Scholar
  8. 8.
    Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K (2005) Short-term risk of death after treatment with nesiritide for decompensated heart failure. JAMA 293:1900–1905PubMedCrossRefGoogle Scholar
  9. 9.
    Costanzo MR, Guglin ME, Saltzberg MT et al (2007) Ultrafiltration versus Intravenous Diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49:675–683PubMedCrossRefGoogle Scholar
  10. 10.
    Ingwall JS (2003) ATP and the heart. Kluwer, BostonGoogle Scholar
  11. 11.
    Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244Google Scholar
  12. 12.
    Neubauer S (2007) The failing heart—an engine out of fuel. NEJM 356(11):1140–1151PubMedCrossRefGoogle Scholar
  13. 13.
    Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Prob Cardiol 19:59–113CrossRefGoogle Scholar
  14. 14.
    Lopaschuk GD, Wambolt RB, Barr RL (1993) An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemia hearts. J Pharmacol Exp Ther 264:135–144PubMedGoogle Scholar
  15. 15.
    Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789PubMedCrossRefGoogle Scholar
  16. 16.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMedCrossRefGoogle Scholar
  17. 17.
    Morrow DA, Givertz MM (2005) Modulation of myocardial energetics. Circulation 112:3218–3221PubMedCrossRefGoogle Scholar
  18. 18.
    Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466PubMedCrossRefGoogle Scholar
  19. 19.
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions: potential for pharmacological interventions. Cardiovasc Res 33:243–257PubMedCrossRefGoogle Scholar
  20. 20.
    Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277PubMedCrossRefGoogle Scholar
  21. 21.
    Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS (1991) Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global under perfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 68:466–481Google Scholar
  22. 22.
    Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842PubMedGoogle Scholar
  23. 23.
    Malhotra R, Brosius FC (1999) Glucose uptake and glycolysis reduced hypoxia induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567–12575PubMedCrossRefGoogle Scholar
  24. 24.
    Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 102:2873–2879Google Scholar
  25. 25.
    Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351PubMedGoogle Scholar
  26. 26.
    Sodi-Pallares D, Testelli MR, Fishleder B (1962) Effects of intravenous infusion of potassium-insulin-glucose solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol 9:116–181CrossRefGoogle Scholar
  27. 27.
    Malmberg K (1997) For the DIGAMI study group. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. Br Med J 314:1512–1515CrossRefGoogle Scholar
  28. 28.
    Malmberg K, Rydén L, Wedel H, Birkeland K, Bootsma A, Dickstein K et al (2005) DIGAMI 2 investigators. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 26:650–656PubMedCrossRefGoogle Scholar
  29. 29.
    IMMEDIATE Trial; Identifier: NCT00091507Google Scholar
  30. 30.
    Hutter JF, Schweickhardt C, Piper HM, Spieckermann PG (1984) Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid. J Mol Cell Cardiol 16:105–108PubMedCrossRefGoogle Scholar
  31. 31.
    Chandler MP, Stanley WC, Morita H, Suzuki G, Roth BA, Blackburn B, Wolff A, Sabbah HN (2002) Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 91:278–280PubMedCrossRefGoogle Scholar
  32. 32.
    Lee L, Campbell R, Scheuermann-Freestone M et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 99:27–35CrossRefGoogle Scholar
  34. 34.
    Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448PubMedCrossRefGoogle Scholar
  35. 35.
    Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, Rhein S (2007) A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 113:205–212Google Scholar
  36. 36.
    Schwarzer M, Faerber G, Rueckauer T, Blum D, Pytel G, Mohr FW, Doenst T (2009) The metabolic modulators, etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Res Cardiol 104(5):547–557PubMedCrossRefGoogle Scholar
  37. 37.
    Rupp H, Schultze W, Vetter R (1995) Dietery medium-chain triglyerides can prevent changes in myosine and SR due to CPT I inhibition by etomoxir. Am J Physiol 269:R630–R640PubMedGoogle Scholar
  38. 38.
    Maier LS (2009) A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late I(Na) using ranolazine. J Cardiovasc Pharmacol 54:279–286PubMedCrossRefGoogle Scholar
  39. 39.
    Tuunanen H, Engblom E, Naum A, Någren K, Scheinin M, Hesse B, Airaksinen J, Nuutila P, Iozzo P, Ukkonen H, Opie LH, Knuuti J (2008) Trimetazidine, a metabolic modulator, has cardiac and extra cardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118:1250–1258PubMedCrossRefGoogle Scholar
  40. 40.
    Fatty Acid and Glucose Metabolism in Cardiac Disease (2005) Mitochondria and the Heart 7:197–227Google Scholar
  41. 41.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96(7):2190–2196PubMedGoogle Scholar
  42. 42.
    Robinson E, Grieve D (2009) Significance of peroxisome proliferators-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 122:246–263PubMedCrossRefGoogle Scholar
  43. 43.
    Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774PubMedCrossRefGoogle Scholar
  44. 44.
    Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366PubMedCrossRefGoogle Scholar
  45. 45.
    Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1. Cardiovasc Res 79:208–217PubMedCrossRefGoogle Scholar
  46. 46.
    Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277(6):4098–4103Google Scholar
  47. 47.
    Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112(15):2339–2346PubMedCrossRefGoogle Scholar
  48. 48.
    Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A (2002) The cardiac phenotype induced by PPAR alpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109(1):121–130PubMedGoogle Scholar
  49. 49.
    Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, Lavine KJ, Goldberg IJ, Kelly DP (2010) Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 121(3):426–435 (Epub 2010 Jan 11)PubMedCrossRefGoogle Scholar
  50. 50.
    Karbowska J, Kochan Z, Smoleński RT (2003) Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett 8(1):49–53PubMedGoogle Scholar
  51. 51.
    Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112(3):407–415PubMedCrossRefGoogle Scholar
  52. 52.
    Goikoetxea MJ, Beaumont J, Gonzalez A, Lopez B, Querejeta R, Larman M, Diez J (2006) Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res 69(4):899–907 (Epub 2005 Dec 20)PubMedCrossRefGoogle Scholar
  53. 53.
    Morgan EE, Chandler MP, Young ME, McElfresh TA, Kung TA, Rennison JH, Tserng KY, Hoit BD, Stanley WC (2006) Dissociation between gene and protein expression of metabolic enzymes in a rodent model of heart failure. Eur J Heart Fail 8(7):687–693PubMedCrossRefGoogle Scholar
  54. 54.
    Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid × receptor-α in pacing-induced heart failure. Circulation 106:606–612PubMedCrossRefGoogle Scholar
  55. 55.
    Tabernero A, Schoonjans K, Jesel L, Carpusca I, Auwerx J, Andriantsitohaina R (2002) Activation of the peroxisome proliferator-activated receptor alpha protects against myocardial ischaemic injury and improves endothelial vasodilatation. BMC Pharmacol 2:10PubMedCrossRefGoogle Scholar
  56. 56.
    Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C (2002) Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J 16:1027–1040PubMedCrossRefGoogle Scholar
  57. 57.
    Yue TL, Bao W, Jucker BM, Gu JL, Romanic AM, Brown PJ, Cui J, Thudium DT, Boyce R, Burns-Kurtis CL, Mirabile RC, Aravindhan K, Ohlstein EH (2003) Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108:2393–2399PubMedCrossRefGoogle Scholar
  58. 58.
    Ichihara S, Obata K, Yamada Y et al (2006) Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol 41:318–329PubMedCrossRefGoogle Scholar
  59. 59.
    Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Lin PJ (2006) Cardiomyocytic apoptosis following global cardiac ischemia and reperfusion can be attenuated by peroxisome proliferator-activated receptor alpha but not gamma activators. Shock 26(3):262–270PubMedCrossRefGoogle Scholar
  60. 60.
    Brigadeau F, Gelé P, Wibaux M, Marquié C, Martin-Nizard F, Torpier G, Fruchart JC, Staels B, Duriez P, Lacroix D (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMedCrossRefGoogle Scholar
  61. 61.
    Linz W, Wohlfart P, Baader M, Breitschopf K, Falk E, Schafer HL, Gerl M, Kramer W, Rutten H (2009) The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 30(7):935–946PubMedCrossRefGoogle Scholar
  62. 62.
    Murakami H, Murakami R, Kambe F, Cao X, Takahashi R, Asai T, Hirai T, Numaguchi Y, Okumura K, Seo H, Murohara T (2006) Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem Biophys Res Commun 341(4):973–978 (Epub 2006 Jan 24)PubMedCrossRefGoogle Scholar
  63. 63.
    Francis G, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Ann Rev Physiol 65:261–311CrossRefGoogle Scholar
  64. 64.
    Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V et al (1987) Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317(20):1237–1245PubMedCrossRefGoogle Scholar
  65. 65.
    Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med 341:410–418PubMedCrossRefGoogle Scholar
  66. 66.
    Saha SA, Kizhakepunnur LG, Bahekar A, Arora RR (2007) The role of fibrates in the prevention of cardiovascular disease—a pooled meta-analysis of long-term randomized placebo-controlled clinical trials. Am Heart J 154(5):943–953PubMedCrossRefGoogle Scholar
  67. 67.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Eng J Med 356(24):2457–2471CrossRefGoogle Scholar
  68. 68.
    Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 170(20):1860–1861Google Scholar
  69. 69.
    Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesäniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M (2005) FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events 9,795 in people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500):1849–1861PubMedCrossRefGoogle Scholar
  70. 70.
    Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, Clarke K, Berge RK, Aasum E (2009) Cardiac peroxisome proliferator-activated receptor-alpha activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovasc Res 83(3):519–526PubMedCrossRefGoogle Scholar
  71. 71.
    Soto P, Herrero P, Baumstark J, Rao F, Schechtman K, Grople R (2009) The PPAR activator fenofibrate fails to alter myocardial metabolism in healthy individuals despite marked peripheral effects. J Nucl Med 50(2):419Google Scholar
  72. 72.
    Delerive P, De Bosscher K, Besnard S et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappa B and AP-1. J Biol Chem 274:32048–32054PubMedCrossRefGoogle Scholar
  73. 73.
    De Silva DS, Wilson RM, Hutchinson C, Ip PC, Garcia AG, Lancel S, Ito M, Pimentel DR, Sam F (2009) Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms. Am J Physiol Heart Circ Physiol 296(6):H1983–H1993PubMedCrossRefGoogle Scholar
  74. 74.
    Ogata T, Miyauchi T, Sakai S, Irukayama-Tomobe Y, Goto K, Yamaguchi I (2002) Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci (Lond) 103(suppl 48):284S–288SGoogle Scholar
  75. 75.
    Wang Y, Wang Y, Yang Q et al (2006) Effects of bezafibrate on the expression of endothelial nitric oxide synthase gene and its mechanisms in cultured bovine endothelial cells. Atherosclerosis 187:265–273PubMedCrossRefGoogle Scholar
  76. 76.
    Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276(48):44390–44395PubMedCrossRefGoogle Scholar
  77. 77.
    Lebrasseur NK, Duhaney TA, De Silva DS, Cui L, Ip PC, Joseph L, Sam F (2007) Effects of fenofibrate on cardiac remodeling in aldosterone-induced hypertension. Hypertension 50(3):489–496PubMedCrossRefGoogle Scholar
  78. 78.
    Duhaney TA, Cui L, Rude MK, Lebrasseur NK, Ngoy S, De Silva DS, Siwik DA, Liao R, Sam F (2007) Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload. Hypertension 49(5):1084–1094PubMedCrossRefGoogle Scholar
  79. 79.
    Morgan EE, Rennison JH, Young ME, McElfresh TA, Kung TA, Tserng KY, Hoit BD, Stanley WC, Chandler MP (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol 290:H1899–H1904Google Scholar
  80. 80.
    Labinskyy V, Bellomo M, Chandler MP, Young ME, Lionetti V, Qanud K, Bigazzi F, Sampietro T, Stanley WC, Recchia FA (2007) Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J Pharmacol Exp Ther 321(1):165–171PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Satyam Sarma
    • 1
  • Hossein Ardehali
    • 1
  • Mihai Gheorghiade
    • 2
  1. 1.Division of Cardiology, Department of Medicine, Northwestern Memorial HospitalNorthwestern UniversityChicagoUSA
  2. 2.Center for Cardiovascular Innovation, Northwestern Memorial HospitalNorthwestern UniversityChicagoUSA

Personalised recommendations