Skip to main content
Log in

Echocardiography in the assessment of left ventricular longitudinal systolic function: current methodology and clinical applications

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Quantification of left ventricular (LV) systolic function represents a major aspect of echocardiographic assessment in the spectrum of cardiac diseases. However, because of the high complexity of LV contraction mechanics, the classical approach with assessment of a single measure of systolic function, such as ejection fraction or fractional shortening, has been largely superseded. During the last years, through the considerable technical advances in the field of ultrasonography, a number of different echocardiographic methodologies have become available to perform a detailed assessment of different aspects of LV contraction. In particular, evaluation of LV longitudinal systolic dynamics has progressively gained importance as a key aspect in the assessment of LV systolic function. For most of the techniques currently used to explore LV longitudinal function, the clinical usefulness in both research and daily practice has been validated by consistent evidence and their use is rapidly increasing. Technical considerations and potential clinical applications of the assessment of LV longitudinal systolic function are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing Group American Society of Echocardiography’s Guidelines, Standards Committee, European Association of Echocardiography (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463. doi:10.1016/j.echo.2005.10.005

    PubMed  Google Scholar 

  2. Ballo P, Mondillo S, Galderisi M (2006) Determinants of discrepancy between left ventricular chamber systolic performance and effective myocardial contractility in subjects with hypertension. J Hum Hypertens 20:701–703. doi:10.1038/sj.jhh.1002055

    CAS  PubMed  Google Scholar 

  3. Marwick TH (2003) Techniques for comprehensive two dimensional echocardiographic assessment of left ventricular systolic function. Heart 89:iii2–iii8

    PubMed  Google Scholar 

  4. Hoffmann R, von Bardeleben S, Kasprzak JD, Borges AC, ten Cate F, Firschke C, Lafitte S, Al-Saadi N, Kuntz-Hehner S, Horstick G, Greis C, Engelhardt M, Vanoverschelde JL, Becher H (2006) Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods. J Am Coll Cardiol 47:121–128. doi:10.1016/j.jacc.2005.10.012

    PubMed  Google Scholar 

  5. Bach DS (2003) Viability, prognosis, revascularization, and Pascal. J Am Coll Cardiol 42:2106–2108. doi:10.1016/j.jacc.2003.09.017

    PubMed  Google Scholar 

  6. Mondillo S, Galderisi M, Ballo P, Marino PN, Study Group of Echocardiography of the Italian Society of Cardiology (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 19:1085–1091. doi:10.1016/j.echo.2006.04.005

    PubMed  Google Scholar 

  7. Alam M, Höglund C, Thorstrand C, Hellekant C (1992) Haemodynamic significance of the atrioventricular plane displacement in patients with coronary artery disease. Eur Heart J 13:194–200

    CAS  PubMed  Google Scholar 

  8. Yuda S, Inaba Y, Fujii S, Kokubu N, Yoshioka T, Sakurai S, Nishizato K, Fujii N, Hashimoto A, Uno K, Nakata T, Tsuchihashi K, Miura T, Ura N, Natori H, Shimamoto K (2006) Assessment of left ventricular ejection fraction using long-axis systolic function is independent of image quality: a study of tissue Doppler imaging and m-mode echocardiography. Echocardiography 23:846–852. doi:10.1111/j.1540-8175.2006.00331.x

    PubMed  Google Scholar 

  9. Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H (2007) Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 292:H1452–H1459. doi:10.1152/ajpheart.01148.2006

    CAS  PubMed  Google Scholar 

  10. Ballo P, Bocelli A, Mondillo S (2007) What is the actual contribution of atrioventricular plane displacement to left ventricular stroke volume? Am J Physiol Heart Circ Physiol 293:H1315. doi:10.1152/ajpheart.00437.2007

    CAS  PubMed  Google Scholar 

  11. Willenheimer R, Israelsson B, Cline C, Rydberg E, Broms K, Erhardt L (1999) Left atrioventricular plane displacement is related to both systolic and diastolic left ventricular performance in patients with chronic heart failure. Eur Heart J 20:612–618. doi:10.1053/euhj.1998.1399

    CAS  PubMed  Google Scholar 

  12. Rydberg E, Willenheimer R, Brand B, Erhardt LR (2001) Left ventricular diastolic filling is related to the atrioventricular plane displacement in patients with coronary artery disease. Scand Cardiovasc J 35:30–34. doi:10.1080/140174301750101447

    CAS  PubMed  Google Scholar 

  13. Sundblad P, Wranne B (2002) Influence of posture on left ventricular long- and short-axis shortening. Am J Physiol Heart Circ Physiol 283:H1302–H1306

    CAS  PubMed  Google Scholar 

  14. Emilsson K, Wandt B (2000) The relation between ejection fraction and mitral annulus motion before and after direct-current electrical cardioversion. Clin Physiol 20:218–224. doi:10.1046/j.1365-2281.2000.00249.x

    CAS  PubMed  Google Scholar 

  15. Carlhäll C, Hatle L, Nylander E (2004) A novel method to assess systolic ventricular function using atrioventricular plane displacement—a study in young healthy males and patients with heart disease. Clin Physiol Funct Imaging 24:190–195. doi:10.1111/j.1475-097X.2004.00547.x

    PubMed  Google Scholar 

  16. Hayashi SY, Lind BI, Seeberger A, do Nascimento MM, Lindholm BJ, Brodin LA (2006) Analysis of mitral annulus motion measurements derived from M-mode, anatomic M-mode, tissue Doppler displacement, and 2-dimensional strain imaging. J Am Soc Echocardiogr 19:1092–1101. doi:10.1016/j.echo.2006.04.014

    PubMed  Google Scholar 

  17. Emilsson K, Wandt B (2000) The relation between mitral annulus motion and ejection fraction changes with age and heart size. Clin Physiol 20:38–43. doi:10.1046/j.1365-2281.2000.00221.x

    CAS  PubMed  Google Scholar 

  18. Emilsson K, Alam M, Wandt B (2000) The relation between mitral annulus motion and ejection fraction: a nonlinear function. J Am Soc Echocardiogr 13:896–901. doi:10.1067/mje.2000.107253

    CAS  PubMed  Google Scholar 

  19. Petrie MC, Caruana L, Berry C, McMurray JJ (2002) “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction? Heart 87:29–31. doi:10.1136/heart.87.1.29

    CAS  PubMed  Google Scholar 

  20. Koulouris SN, Kostopoulos KG, Triantafyllou KA, Karabinos I, Bouki TP, Karvounis HI, Omran H, Filippatos G, Kranidis AI (2005) Impaired systolic dysfunction of left ventricular longitudinal fibers: a sign of early hypertensive cardiomyopathy. Clin Cardiol 28:282–286. doi:10.1002/clc.4960280605

    PubMed  Google Scholar 

  21. Takeda S, Rimington H, Smeeton N, Chambers J (2001) Long axis excursion in aortic stenosis. Heart 86:52–56. doi:10.1136/heart.86.1.52

    CAS  PubMed  Google Scholar 

  22. Ballo P, Quatrini I, Giacomin E, Motto A, Mondillo S (2007) Circumferential versus longitudinal systolic function in patients with hypertension: a nonlinear relation. J Am Soc Echocardiogr 20:298–306. doi:10.1016/j.echo.2006.08.024

    PubMed  Google Scholar 

  23. Rydberg E, Gudmundsson P, Kennedy L, Erhardt L, Willenheimer R (2004) Left atrioventricular plane displacement but not left ventricular ejection fraction is influenced by the degree of aortic stenosis. Heart 90:1151–1155. doi:10.1136/hrt.2003.020628

    CAS  PubMed  Google Scholar 

  24. Rydberg E, Willenheimer R, Erhardt L (1999) Left atrioventricular plane displacement at rest is reduced in relation to severity of coronary artery disease irrespective of prior myocardial infarction. Int J Cardiol 69:201–207. doi:10.1016/S0167-5273(99)00036-4

    CAS  PubMed  Google Scholar 

  25. Löwbeer C, Gustafsson SA, Seeberger A, Bouvier F, Hulting J (2004) Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest 64:667–676. doi:10.1080/00365510410003002

    PubMed  Google Scholar 

  26. Elnoamany MF, Abdelhameed AK (2006) Mitral annular motion as a surrogate for left ventricular function: correlation with brain natriuretic peptide levels. Eur J Echocardiogr 7:187–198. doi:10.1016/j.euje.2005.05.005

    PubMed  Google Scholar 

  27. Willenheimer R, Cline C, Erhardt L, Israelsson B (1997) Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. Heart 78:230–236

    CAS  PubMed  Google Scholar 

  28. Rydberg E, Erhardt L, Brand B, Willenheimer R (2003) Left atrioventricular plane displacement determined by echocardiography: a clinically useful, independent predictor of mortality in patients with stable coronary artery disease. J Intern Med 254:479–485. doi:10.1046/j.1365-2796.2003.01218.x

    CAS  PubMed  Google Scholar 

  29. Rydberg E, Arlbrandt M, Gudmundsson P, Erhardt L, Willenheimer R (2003) Left atrioventricular plane displacement predicts cardiac mortality in patients with chronic atrial fibrillation. Int J Cardiol 91:1–7. doi:10.1016/S0167-5273(02)00578-8

    PubMed  Google Scholar 

  30. Hedberg P, Jonason T, Lönnberg I, Nilsson G, Pehrsson K, Ringqvist I (2006) Mitral annulus motion as a predictor of mortality in a community-based sample of 75-year-old men and women. J Am Soc Echocardiogr 19:88–94. doi:10.1016/j.echo.2005.05.005

    PubMed  Google Scholar 

  31. Brand B, Rydberg E, Ericsson G, Gudmundsson P, Willenheimer R (2002) Prognostication and risk stratification by assessment of left atrioventricular plane displacement in patients with myocardial infarction. Int J Cardiol 83:35–41. doi:10.1016/S0167-5273(02)00007-4

    PubMed  Google Scholar 

  32. Sveälv BG, Olofsson EL, Andersson B (2008) Ventricular long-axis function is of major importance for long-term survival in patients with heart failure. Heart 94:284–289. doi:10.1136/hrt.2006.106294

    PubMed  Google Scholar 

  33. Blendea D, Duncea C, Bedreaga M, Crisan S, Zarich S (2007) Abnormalities of left ventricular long-axis function predict the onset of hypertension independent of blood pressure: a 7-year prospective study. J Hum Hypertens 21:539–545

    CAS  PubMed  Google Scholar 

  34. Alam M, Wardell J, Andersson E, Nordlander R, Samad B (2003) Assessment of left ventricular function using mitral annular velocities in patients with congestive heart failure with or without the presence of significant mitral regurgitation. J Am Soc Echocardiogr 16:240–245. doi:10.1067/mje.2003.52

    PubMed  Google Scholar 

  35. Yamada H, Oki T, Tabata T, Iuchi A, Ito S (1998) Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with peak dP/dt of the left ventricular pressure curve. J Am Soc Echocardiogr 11:442–449. doi:10.1016/S0894-7317(98)70024-0

    CAS  PubMed  Google Scholar 

  36. Innelli P, Sanchez R, Marra F, Esposito R, Galderisi M (2008) The impact of aging on left ventricular longitudinal function in healthy subjects: a pulsed tissue Doppler study. Eur J Echocardiogr 9:241–249

    PubMed  Google Scholar 

  37. Cheung M, Redington A, Vogel M, Schmidt M, Sorensen K (2005) Influence of preload alterations on parameters of systolic left ventricular long-axis function: a Doppler tissue study: flawed methodology leads to spurious results. J Am Soc Echocardiogr 18:298. doi:10.1016/j.echo.2004.11.012

    PubMed  Google Scholar 

  38. Hsiao SH, Huang WC, Sy CL, Lin SK, Lee TY, Liu CP (2005) Doppler tissue imaging and color M-mode flow propagation velocity: are they really preload independent? J Am Soc Echocardiogr 18:1277–1284. doi:10.1016/j.echo.2005.07.016

    PubMed  Google Scholar 

  39. Vitale G, Galderisi M, Lupoli GA, Celentano A, Pietropaolo I, Parenti N, De Divitiis O, Lupoli G (2002) Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J Clin Endocrinol Metab 87:4350–4355. doi:10.1210/jc.2002-011764

    CAS  PubMed  Google Scholar 

  40. Agricola E, Galderisi M, Oppizzi M, Schinkel AF, Maisano F, De Bonis M, Margonato A, Maseri A, Alfieri O (2004) Pulsed tissue Doppler imaging detects early myocardial dysfunction in asymptomatic patients with severe mitral regurgitation. Heart 90:406–410. doi:10.1136/hrt.2002.009621

    CAS  PubMed  Google Scholar 

  41. Borges MC, Colombo RC, Gonçalves JG, Ferreira Jde O, Franchini KG (2006) Longitudinal mitral annulus velocities are reduced in hypertensive subjects with or without left ventricle hypertrophy. Hypertension 47:854–860. doi:10.1161/01.HYP.0000216123.57284.b0

    CAS  PubMed  Google Scholar 

  42. Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quiñones MA, Roberts R, Marian AJ (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104:128–130

    CAS  PubMed  Google Scholar 

  43. Sokmen G, Sokmen A, Duzenli A, Soylu A, Ozdemir K (2007) Assessment of myocardial velocities and global function of the left ventricle in asymptomatic patients with moderate-to-severe chronic aortic regurgitation: a tissue Doppler echocardiographic study. Echocardiography 24:609–614. doi:10.1111/j.1540-8175.2007.00438.x

    PubMed  Google Scholar 

  44. Koyama J, Ray-Sequin PA, Davidoff R, Falk RH (2002) Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am J Cardiol 89:1067–1071. doi:10.1016/S0002-9149(02)02277-4

    PubMed  Google Scholar 

  45. Dandel M, Wellnhofer E, Hummel M, Meyer R, Lehmkuhl H, Hetzer R (2003) Early detection of left ventricular dysfunction related to transplant coronary artery disease. J Heart Lung Transplant 22:1353–1364. doi:10.1016/S1053-2498(03)00055-X

    PubMed  Google Scholar 

  46. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110:3081–3087. doi:10.1161/01.CIR.0000147184.13872.0F

    PubMed  Google Scholar 

  47. Galderisi M, Vitale G, Bianco A, Pivonello R, Lombardi G, Divitiis O, Colao A (2006) Pulsed tissue Doppler identifies subclinical myocardial biventricular dysfunction in active acromegaly. Clin Endocrinol 64:390–397

    Google Scholar 

  48. Parisi M, Galderisi M, Sidiropulos M, Fiorillo C, Lanzillo R, D’Errico A, Grieco M, Innelli P, Santoro L, de Divitiis O (2007) Early detection of biventricular involvement in myotonic dystrophy by tissue Doppler. Int J Cardiol 118:227–232. doi:10.1016/j.ijcard.2006.06.056

    PubMed  Google Scholar 

  49. Cardim N, Cordeiro R, Correia MJ, Gomes E, Longo S, Ferreira T, Pereira A, Gouveia A, Reis RP, Correia JM (2002) Tissue Doppler imaging and long axis left ventricular function: hypertrophic cardiomyopathy versus athlete’s heart. Rev Port Cardiol 21:679–707

    PubMed  Google Scholar 

  50. Matsuoka M, Oki T, Mishiro Y, Yamada H, Tabata T, Wakatsuki T, Ito S (2002) Early systolic mitral annular motion velocities responses to dobutamine infusion predict myocardial viability in patients with previous myocardial infarction. Am Heart J 143:552–558. doi:10.1067/mhj.2002.121266

    PubMed  Google Scholar 

  51. Wang M, Yip GW, Wang AY, Zhang Y, Ho PY, Tse MK, Yu CM, Sanderson JE (2005) Tissue Doppler imaging provides incremental prognostic value in patients with systemic hypertension and left ventricular hypertrophy. J Hypertens 23:183–191. doi:10.1097/00004872-200501000-00029

    PubMed  Google Scholar 

  52. Hameed AK, Gosal T, Fang T, Ahmadie R, Lytwyn M, Barac I, Zieroth S, Hussain F, Jassal DS (2008) Clinical utility of tissue Doppler imaging in patients with acute myocardial infarction complicated by cardiogenic shock. Cardiovasc Ultrasound 6:11. doi:10.1186/1476-7120-6-11

    PubMed  Google Scholar 

  53. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2004) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Google Scholar 

  54. Bountioukos M, Schinkel AF, Bax JJ, Biagini E, Rizzello V, Krenning BJ, Vourvouri EC, Roelandt JR, Poldermans D (2004) Pulsed-wave tissue Doppler quantification of systolic and diastolic function of viable and nonviable myocardium in patients with ischemic cardiomyopathy. Am Heart J 148:1079–1084. doi:10.1016/j.ahj.2004.05.022

    PubMed  Google Scholar 

  55. Bountioukos M, Schinkel AF, Bax JJ, Rizzello V, Valkema R, Krenning BJ, Biagini E, Vourvouri EC, Roelandt JR, Poldermans D (2004) Pulsed wave tissue Doppler imaging for the quantification of contractile reserve in stunned, hibernating, and scarred myocardium. Heart 90:506–510. doi:10.1136/hrt.2003.018531

    CAS  PubMed  Google Scholar 

  56. Penicka M, Tousek P, De Bruyne B, Wijns W, Lang O, Madaric J, Vanderheyden M, Tintera J, Malý M, Widimsky P, Bartunek J (2007) Myocardial positive pre-ejection velocity accurately detects presence of viable myocardium, predicts recovery of left ventricular function and bears a prognostic value after surgical revascularization. Eur Heart J 28:1366–1373. doi:10.1093/eurheartj/ehl456

    PubMed  Google Scholar 

  57. McCulloch M, Zoghbi WA, Davis R, Thomas C, Dokainish H (2006) Color tissue Doppler myocardial velocities consistently underestimate spectral tissue Doppler velocities: impact on calculation peak transmitral pulsed Doppler velocity/early diastolic tissue Doppler velocity (E/Ea). J Am Soc Echocardiogr 19:744–748. doi:10.1016/j.echo.2006.01.020

    PubMed  Google Scholar 

  58. Cain P, Baglin T, Case C, Spicer D, Short L, Marwick TH (2001) Application of tissue Doppler to interpretation of dobutamine echocardiography and comparison with quantitative coronary angiography. Am J Cardiol 87:525–531. doi:10.1016/S0002-9149(00)01425-9

    CAS  PubMed  Google Scholar 

  59. Gulati VK, Katz WE, Follansbee WP, Gorcsan J III (1996) Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol 77:979–984. doi:10.1016/S0002-9149(96)00033-1

    CAS  PubMed  Google Scholar 

  60. Edvardsen T, Aakhus S, Endresen K, Bjomerheim R, Smiseth OA, Ihlen H (2000) Acute regional myocardial ischemia identified by 2-dimensional multiregion tissue Doppler imaging technique. J Am Soc Echocardiogr 13:986–994. doi:10.1067/mje.2000.108466

    CAS  PubMed  Google Scholar 

  61. Vogel M, Cheung MM, Li J, Kristiansen SB, Schmidt MR, White PA, Sorensen K, Redington AN (2003) Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation 107:1647–1652. doi:10.1161/01.CIR.0000058171.62847.90

    PubMed  Google Scholar 

  62. Shimizu M, Nii M, Konstantinov IE, Li J, Redington AN (2005) Isovolumic but not ejection phase Doppler tissue indices detect left ventricular dysfunction caused by coronary stenosis. J Am Soc Echocardiogr 18:1241–1246. doi:10.1016/j.echo.2005.03.035

    PubMed  Google Scholar 

  63. Cheung MM, Smallhorn JF, Vogel M, Van Arsdell G, Redington AN (2006) Disruption of the ventricular myocardial force-frequency relationship after cardiac surgery in children: noninvasive assessment by means of tissue Doppler imaging. J Thorac Cardiovasc Surg 131:625–631. doi:10.1016/j.jtcvs.2005.09.056

    PubMed  Google Scholar 

  64. Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G (2006) Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol 27:32–36. doi:10.1007/s00246-005-0877-8

    PubMed  Google Scholar 

  65. Lyseggen E, Rabben SI, Skulstad H, Urheim S, Risoe C, Smiseth OA (2005) Myocardial acceleration during isovolumic contraction: relationship to contractility. Circulation 111:1362–1369. doi:10.1161/01.CIR.0000158432.86860.A6

    PubMed  Google Scholar 

  66. Willens HJ, Chakko SC, Lowery MH, Byers P, Labrador E, Gallagher A, Castrillon JC, Myerburg RJ (2004) Tissue Doppler imaging of the right and left ventricle in severe obesity (body mass index >35 kg/m2). Am J Cardiol 94:1087–1090. doi:10.1016/j.amjcard.2004.06.076

    PubMed  Google Scholar 

  67. Nikitin NP, Witte KK, Clark AL, Cleland JG (2002) Colour tissue Doppler-derived long-axis left ventricular function in heart failure with preserved global systolic function. Am J Cardiol 90:1174–1177. doi:10.1016/S0002-9149(02)02794-7

    PubMed  Google Scholar 

  68. Cain P, Marwick TH, Case C, Baglin T, Dart J, Short L, Olstad B (2001) Assessment of regional long-axis function during dobutamine echocardiography. Clin Sci (Lond) 100:423–432. doi:10.1042/CS20000105

    CAS  Google Scholar 

  69. Fraser AG, Payne N, Mädler CF, Janerot-Sjøberg B, Lind B, Grocott-Mason RM, Ionescu AA, Florescu N, Wilkenshoff U, Lancellotti P, Wütte M, Brodin LA, MYDISE Investigators (2003) Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 4:43–53. doi:10.1053/euje.2002.0610

    CAS  PubMed  Google Scholar 

  70. Katz WE, Gulati VK, Mahler CM, Gorcsan J III (1997) Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol 79:1036–1042. doi:10.1016/S0002-9149(97)00043-X

    CAS  PubMed  Google Scholar 

  71. Garot J, Pascal O, Diébold B, Derumeaux G, Gerber BL, Dubois-Randé JL, Lima JA, Guéret P (2002) Alterations of systolic left ventricular twist after acute myocardial infarction. Am J Physiol Heart Circ Physiol 282:H357–H362

    CAS  PubMed  Google Scholar 

  72. Nikitin NP, Loh PH, Silva R, Ghosh J, Khaleva OY, Goode K, Rigby AS, Alamgir F, Clark AL, Cleland JG (2006) Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 92:775–779. doi:10.1136/hrt.2005.067140

    CAS  PubMed  Google Scholar 

  73. Nishino M, Tanouchi J, Tanaka K, Ito T, Kato J, Iwai K, Tanahashi H, Hori M, Yamada Y, Kamada T (1999) Dobutamine stress echocardiography at 7.5 mg/kg/min using colour tissue Doppler imaging M-mode safely predicts reversible dysfunction early after reperfusion in patients with acute myocardial infarction. Am J Cardiol 83:340–344. doi:10.1016/S0002-9149(98)00865-0

    CAS  PubMed  Google Scholar 

  74. Cicala S, Galderisi M, Guarini P, D’Errico A, Innelli P, Pardo M, Scognamiglio G, de Divitiis O (2004) Transthoracic coronary flow reserve and dobutamine derived myocardial function: a 6-month evaluation after successful coronary angioplasty. Cardiovasc Ultrasound 2:26. doi:10.1186/1476-7120-2-26

    PubMed  Google Scholar 

  75. Song JK, Song JM, Kang DH, Haluska B, Marwick TH (2004) Postsystolic thickening detected by Doppler myocardial imaging: a marker of viability or ischemia in patients with myocardial infarction. Clin Cardiol 27:29–32. doi:10.1002/clc.4960270108

    PubMed  Google Scholar 

  76. Terkelsen CJ, Poulsen SH, Nørgaard BL, Lassen JF, Gerdes JC, Sloth E, Nielsen TT, Andersen HR, Egeblad H (2007) Does postsystolic motion or shortening predict recovery of myocardial function after primary percutaneous coronary intervention? J Am Soc Echocardiogr 20:505–511. doi:10.1016/j.echo.2006.10.004

    PubMed  Google Scholar 

  77. Citro R, Galderisi M (2005) Myocardial postsystolic motion in ischemic and not ischemic myocardium: the clinical value of tissue Doppler. Echocardiography 22:525–532. doi:10.1111/j.1540-8175.2005.40014.x

    PubMed  Google Scholar 

  78. Zamorano J, Pérez de Isla L, Roque C, Khanhderia B (2007) The role of echocardiography in the assessment of mechanical dyssynchrony and its importance in predicting response to prognosis after cardiac resynchronization therapy. J Am Soc Echocardiogr 20:91–99. doi:10.1016/j.echo.2006.07.004

    PubMed  Google Scholar 

  79. Ganame J, Claus P, Eyskens B, Uyttebroeck A, Renard M, D’hooge J, Gewillig M, Bijnens B, Sutherland GR, Mertens L (2007) Acute cardiac functional and morphological changes after anthracycline infusions in children. Am J Cardiol 99:974–977. doi:10.1016/j.amjcard.2006.10.063

    CAS  PubMed  Google Scholar 

  80. Cheung MM, Smallhorn JF, McCrindle BW, Van Arsdell GS, Redington AN (2005) Non-invasive assessment of ventricular force-frequency relations in the univentricular circulation by tissue Doppler echocardiography: a novel method of assessing myocardial performance in congenital heart disease. Heart 91:1338–1342. doi:10.1136/hrt.2004.048207

    CAS  PubMed  Google Scholar 

  81. Pauliks LB, Vogel M, Mädler CF, Williams RI, Payne N, Redington AN, Fraser AG (2005) Regional response of myocardial acceleration during isovolumic contraction during dobutamine stress echocardiography: a colour tissue Doppler study and comparison with angiocardiographic findings. Echocardiography 22:797–808. doi:10.1111/j.1540-8175.2005.00135.x

    PubMed  Google Scholar 

  82. Frøbert O, Moesgaard J, Toft E, Poulsen SH, Søgaard P (2004) Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging. Cardiovasc Ultrasound 2:22. doi:10.1186/1476-7120-2-22

    PubMed  Google Scholar 

  83. Saha S, Nowak J, Storaa C, Mädler CF, Fraser A, Roumina S, Lind B, Brodin LA, MYDISE investigators (2005) Functional diagnosis of coronary stenosis using tissue tracking provides best sensitivity and specificity for left circumflex disease: experience from the MYDISE (myocardial Doppler in stress echocardiography) study. Eur J Echocardiogr 6:54–63. doi:10.1016/j.euje.2004.07.003

    PubMed  Google Scholar 

  84. Marwick TH, Case C, Leano R, Short L, Baglin T, Cain P, Garrahy P (2004) Use of tissue Doppler imaging to facilitate the prediction of events in patients with abnormal left ventricular function by dobutamine echocardiography. Am J Cardiol 93:142–146. doi:10.1016/j.amjcard.2003.09.029

    PubMed  Google Scholar 

  85. Roy S, Sankar V, Francis J, Tada H (2005) Tissue tracking imaging for identifying the origin of idiopathic ventricular arrhythmias: a new role of cardiac ultrasound in electrophysiology. Indian Pacing Electrophysiol J 5:155–159

    PubMed  Google Scholar 

  86. Sun JP, Popović ZB, Greenberg NL, Xu XF, Asher CR, Stewart WJ, Thomas JD (2004) Noninvasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 17:132–138. doi:10.1016/j.echo.2003.10.001

    PubMed  Google Scholar 

  87. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    CAS  PubMed  Google Scholar 

  88. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56. doi:10.1161/01.CIR.0000019907.77526.75

    PubMed  Google Scholar 

  89. Saghir M, Areces M, Makan M (2007) SR imaging differentiates hypertensive cardiac hypertrophy from physiologic cardiac hypertrophy (athlete’s heart). J Am Soc Echocardiogr 20:151–157. doi:10.1016/j.echo.2006.08.006

    PubMed  Google Scholar 

  90. Marciniak A, Claus P, Sutherland GR, Marciniak M, Karu T, Baltabaeva A, Merli E, Bijnens B, Jahangiri M (2007) Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J 28:2627–2636. doi:10.1093/eurheartj/ehm072

    PubMed  Google Scholar 

  91. Rajdev S, Nanda NC, Patel V, Singh A, Mehmood F, Vengala S, Fang L, Dasan V, Benza RL, Bourge RC (2006) Tissue Doppler assessment of longitudinal right and left ventricular strain and strain rate in pulmonary artery hypertension. Echocardiography 23:872–879. doi:10.1111/j.1540-8175.2006.00337.x

    PubMed  Google Scholar 

  92. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W, Claus P, D’hooge J, Bijnens B, Vanhaecke J, Sutherland GR (2007) The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 8:213–221. doi:10.1016/j.euje.2006.03.014

    PubMed  Google Scholar 

  93. Pacileo G, Di Salvo G, Limongelli G, Miele T, Calabrò R (2007) Echocardiography in congenital heart disease: usefulness, limits and new techniques. J Cardiovasc Med 8:17–22

    Google Scholar 

  94. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, Rea A, Fratta F, Castaldi B, D’Andrea A, Calabrò P, Miele T, Coppola F, Russo MG, Caso P, Perrone L, Calabrò R (2006) Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J 27:2689–2695. doi:10.1093/eurheartj/ehl163

    PubMed  Google Scholar 

  95. Fernandes VR, Polak JF, Edvardsen T, Carvalho B, Gomes A, Bluemke DA, Nasir K, O’Leary DH, Lima JA (2006) Subclinical atherosclerosis and incipient regional myocardial dysfunction in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 47:2420–2428. doi:10.1016/j.jacc.2005.12.075

    PubMed  Google Scholar 

  96. Govind S, Saha S, Brodin LA, Ramesh SS, Arvind SR, Quintana M (2006) Impaired myocardial functional reserve in hypertension and diabetes mellitus without coronary artery disease: searching for the possible link with congestive heart failure in the myocardial Doppler in diabetes (MYDID) study II. Am J Hypertens 19:851–857. doi:10.1016/j.amjhyper.2006.01.005

    PubMed  Google Scholar 

  97. D’Andrea A, Stisi S, Caso P, Uccio FS, Bellissimo S, Salerno G, Scarafile R, Riegler L, Cuomo S, Citro R, Scherillo M, Calabrò R (2007) Associations between left ventricular myocardial involvement and endothelial dysfunction in systemic sclerosis: noninvasive assessment in asymptomatic patients. Echocardiography 24:587–597. doi:10.1111/j.1540-8175.2007.00436.x

    PubMed  Google Scholar 

  98. Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, Iwase M, Murohara T, Yokota M (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110:3808–3814. doi:10.1161/01.CIR.0000150334.69355.00

    PubMed  Google Scholar 

  99. Støylen A, Heimdal A, Bjørnstad K, Wiseth R, Vik-Mo H, Torp H, Angelsen B, Skjaerpe T (2000) Strain rate imaging by ultrasonography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr 13:1053–1106. doi:10.1067/mje.2000.106573

    PubMed  Google Scholar 

  100. Kukulski T, Jamal F, Herbots L, D’hooge J, Bijnens B, Hatle L, De Scheerder I, Sutherland GR (2003) Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 41:810–819. doi:10.1016/S0735-1097(02)02934-0

    PubMed  Google Scholar 

  101. Weidemann F, Jung P, Hoyer C, Broscheit J, Voelker W, Ertl G, Störk S, Angermann CE, Strotmann JM (2007) Assessment of the contractile reserve in patients with intermediate coronary lesions: a strain rate imaging study validated by invasive myocardial fractional flow reserve. Eur Heart J 28:1425–1432. doi:10.1093/eurheartj/ehm082

    PubMed  Google Scholar 

  102. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, Platsch G, Kuwert T, Daniel WG, Flachskampf FA (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126. doi:10.1161/01.CIR.0000065249.69988.AA

    PubMed  Google Scholar 

  103. Hoffmann R, Altiok E, Nowak B, Heussen N, Kühl H, Kaiser HJ, Büll U, Hanrath P (2002) Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J Am Coll Cardiol 39:443–449. doi:10.1016/S0735-1097(01)01763-6

    PubMed  Google Scholar 

  104. Galderisi M, de Simone G, Innelli P, Turco A, Turco S, Capaldo B, Riccardi G, de Divitiis O (2007) Impaired inotropic response in type 2 diabetes mellitus: a strain rate imaging study. Am J Hypertens 20:548–555. doi:10.1016/j.amjhyper.2006.12.009

    PubMed  Google Scholar 

  105. Bjork Ingul C, Rozis E, Slordahl SA, Marwick TH (2007) Incremental value of strain rate imaging to wall motion analysis for prediction of outcome in patients undergoing dobutamine stress echocardiography. Circulation 115:1252–1259

    PubMed  Google Scholar 

  106. Hanekom L, Jenkins C, Jeffries L, Case C, Mundy J, Hawley C, Marwick TH (2005) Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation 112:3892–3900. doi:10.1161/CIRCULATIONAHA.104.489310

    PubMed  Google Scholar 

  107. Yu CM, Fung JW, Zhang Q, Chan CK, Chan YS, Lin H, Kum LC, Kong SL, Zhang Y, Sanderson JE (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110:66–73. doi:10.1161/01.CIR.0000133276.45198.A5

    PubMed  Google Scholar 

  108. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793. doi:10.1016/j.jacc.2005.10.040

    PubMed  Google Scholar 

  109. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029. doi:10.1016/j.echo.2004.06.019

    PubMed  Google Scholar 

  110. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29:1283–1289. doi:10.1093/eurheartj/ehn141

    CAS  PubMed  Google Scholar 

  111. Gjesdal O, Hopp E, Vartdal T, Lunde K, Helle-Valle T, Aakhus S, Smith HJ, Ihlen H, Edvardsen T (2007) Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci (Lond) 113:287–296. doi:10.1042/CS20070066

    Google Scholar 

  112. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH (2006) Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 48:2026–2033. doi:10.1016/j.jacc.2006.07.050

    PubMed  Google Scholar 

  113. Hanekom L, Cho GY, Leano R, Jeffriess L, Marwick TH (2007) Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 28:1765–1772. doi:10.1093/eurheartj/ehm188

    PubMed  Google Scholar 

  114. Knebel F, Schattke S, Bondke H, Walde T, Eddicks S, Reibis R, Baumann G, Borges AC (2007) Evaluation of longitudinal and radial two-dimensional strain imaging versus Doppler tissue echocardiography in predicting long-term response to cardiac resynchronization therapy. J Am Soc Echocardiogr 4:335–341. doi:10.1016/j.echo.2006.09.007

    Google Scholar 

  115. Carlhäll C, Wigström L, Heiberg E, Karlsson M, Bolger AF, Nylander E (2004) Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am J Physiol Heart Circ Physiol 287:H1836–H1841. doi:10.1152/ajpheart.00103.2004

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Zacà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacà, V., Ballo, P., Galderisi, M. et al. Echocardiography in the assessment of left ventricular longitudinal systolic function: current methodology and clinical applications. Heart Fail Rev 15, 23–37 (2010). https://doi.org/10.1007/s10741-009-9147-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-009-9147-9

Keywords

Navigation