Heart Failure Reviews

, Volume 14, Issue 3, pp 143–153 | Cite as

Obstructive sleep apnea: the new cardiovascular disease. Part I: obstructive sleep apnea and the pathogenesis of vascular disease

  • Rami Khayat
  • Brian Patt
  • Don HayesJr.


Obstructive sleep apnea (OSA) is increasingly recognized as a novel cardiovascular risk factor. OSA is implicated in the pathogenesis of hypertension, left ventricular dysfunction, coronary artery disease and stroke. OSA exerts its negative cardiovascular consequences through its unique pattern of intermittent hypoxia. Endothelial dysfunction, oxidative stress, and inflammation are all consequences of OSA directly linked to intermittent hypoxia and critical pathways in the pathogenesis of cardiovascular disease in patients with OSA. This review will discuss the known mechanisms of vascular dysfunction in patients with OSA and their implications for cardiovascular disease.


Obstructive sleep apnea Heart failure Endothelial dysfunction Intermittent hypoxia Oxidative stress 


  1. 1.
    Young T, Skatrud J, Peppard PE (2004) Risk factors for obstructive sleep apnea in adults. J Am Med Assoc 291(16):2013–2016. doi: 10.1001/jama.291.16.2013 CrossRefGoogle Scholar
  2. 2.
    Young T et al (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235. doi: 10.1056/NEJM199304293281704 PubMedCrossRefGoogle Scholar
  3. 3.
    McNicholas WT, Bonsigore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29(1):156–178. doi: 10.1183/09031936.00027406 PubMedCrossRefGoogle Scholar
  4. 4.
    Campos-Rodriguez F et al (2005) Mortality in obstructive sleep apnea-hypopnea patients treated with positive airway pressure. Chest 128(2):624–633. doi: 10.1378/chest.128.2.624 PubMedCrossRefGoogle Scholar
  5. 5.
    Doherty LS et al (2005) Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest 127(6):2076–2084. doi: 10.1378/chest.127.6.2076 PubMedCrossRefGoogle Scholar
  6. 6.
    Marin JM et al (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053PubMedGoogle Scholar
  7. 7.
    Badr MS (1996) Effect of ventilatory drive on upper airway patency in humans during NREM sleep. Respir Physiol 103(1):1–10. doi: 10.1016/0034-5687(95)00079-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Jordan AS, White DP (2008) Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol 160(1):1–7. doi: 10.1016/j.resp.2007.07.009 PubMedCrossRefGoogle Scholar
  9. 9.
    Malhotra A et al (2001) Upper-airway collapsibility: measurements and sleep effects. Chest 120(1):156–161. doi: 10.1378/chest.120.1.156 PubMedCrossRefGoogle Scholar
  10. 10.
    Horner RL et al (1989) Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J 2(7):613–622PubMedGoogle Scholar
  11. 11.
    Morgan BJ, Denahan T, Ebert TJ (1993) Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea. J Appl Physiol 74(6):2969–2975PubMedGoogle Scholar
  12. 12.
    Katragadda S et al (1997) Neural mechanism of the pressor response to obstructive and nonobstructive apnea. J Appl Physiol 83(6):2048–2054PubMedGoogle Scholar
  13. 13.
    Peng YJ, Prabhakar NR (2003) Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol 94(6):2342–2349PubMedGoogle Scholar
  14. 14.
    Prabhakar NR et al (2001) Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol 281(3):L524–L528PubMedGoogle Scholar
  15. 15.
    Prabhakar NR, Kline DD (2002) Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Al Med Biol 3(2):195–204. doi: 10.1089/15270290260131920 CrossRefGoogle Scholar
  16. 16.
    Cutler MJ et al (2004) Periods of intermittent hypoxic apnea can alter chemoreflex control of sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol 287(5):H2054–H2060. doi: 10.1152/ajpheart.00377.2004 PubMedCrossRefGoogle Scholar
  17. 17.
    Lesske J et al (1997) Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens 15(12 Pt 2):1593–1603PubMedGoogle Scholar
  18. 18.
    Fletcher EC (2001) Invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90(4):1600–1605PubMedGoogle Scholar
  19. 19.
    Brooks D et al (1997) Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest 99(1):106–109. doi: 10.1172/JCI119120 PubMedCrossRefGoogle Scholar
  20. 20.
    Somers VK et al (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96(4):1897–1904. doi: 10.1172/JCI118235 PubMedCrossRefGoogle Scholar
  21. 21.
    Xie A et al (2000) Neurocirculatory consequences of intermittent asphyxia in humans. J Appl Physiol 89(4):1333–1339PubMedGoogle Scholar
  22. 22.
    Cutler MJ et al (2004) Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol 96(2):754–761. doi: 10.1152/japplphysiol.00506.2003 PubMedCrossRefGoogle Scholar
  23. 23.
    Xie A et al (2001) Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 91(4):1555–1562PubMedGoogle Scholar
  24. 24.
    Khayat RN et al (2004) Role of sensory input from the lungs in control of muscle sympathetic nerve activity during and after apnea in humans. J Appl Physiol 97(2):635–640. doi: 10.1152/japplphysiol.00241.2004 PubMedCrossRefGoogle Scholar
  25. 25.
    Prabhakar NR et al (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 32(5–6):447–449. doi: 10.1111/j.1440-1681.2005.04209.x PubMedCrossRefGoogle Scholar
  26. 26.
    Fletcher EC et al (1992) Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 72(5):1978–1984PubMedGoogle Scholar
  27. 27.
    Fletcher EC et al (1992) Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19(6 Pt 1):555–561PubMedGoogle Scholar
  28. 28.
    Fletcher EC et al (1992) Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension 20(5):612–619PubMedGoogle Scholar
  29. 29.
    Bao G et al (1997) Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol 83(1):95–101PubMedGoogle Scholar
  30. 30.
    Dick TE et al (2007) Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol 92(1):87–97. doi: 10.1113/expphysiol.2006.035758 PubMedCrossRefGoogle Scholar
  31. 31.
    Sica AL et al (2000) Chronic-intermittent hypoxia: a model of sympathetic activation in the rat. Respir Physiol 121(2–3):173–184. doi: 10.1016/S0034-5687(00)00126-2 PubMedCrossRefGoogle Scholar
  32. 32.
    Greenberg HE et al (1999) Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86(1):298–305PubMedGoogle Scholar
  33. 33.
    Fletcher EC (2003) Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep 26(1):15–19PubMedGoogle Scholar
  34. 34.
    Julius S, Esler MD, Randall OS (1975) Role of the autonomic nervous system in mild human hypertension. Clin Sci Mol Med Suppl 2:243s–252sPubMedGoogle Scholar
  35. 35.
    Esler M et al (1986) Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol 8(Suppl 5):S39–S43PubMedCrossRefGoogle Scholar
  36. 36.
    Esler M et al (1976) High-renin essential hypertension: adrenergic cardiovascular correlates. Clin Sci Mol Med Suppl 3:181s–184sPubMedGoogle Scholar
  37. 37.
    Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776PubMedGoogle Scholar
  38. 38.
    Guo GB, Abboud FM (1984) Angiotensin II attenuates baroreflex control of heart rate and sympathetic activity. Am J Physiol 246(1 Pt 2):H80–H89PubMedGoogle Scholar
  39. 39.
    Rumantir MS et al (2000) The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens 18(6):717–723. doi: 10.1097/00004872-200018060-00009 PubMedCrossRefGoogle Scholar
  40. 40.
    Kim JR et al (1999) Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension 33(2):640–646PubMedGoogle Scholar
  41. 41.
    Farsang C et al (1981) Effect of prazosin and oxprenolol on plasma renin activity and blood pressure in patients with essential hypertension. Cardiology 67(3):164–171PubMedCrossRefGoogle Scholar
  42. 42.
    Winternitz SR, Katholi RE, Oparil S (1980) Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest 66(5):971–978. doi: 10.1172/JCI109966 PubMedCrossRefGoogle Scholar
  43. 43.
    Ma X et al (2006) Dual mechanisms of angiotensin-induced activation of mouse sympathetic neurones. J Physiol 573(Pt 1):45–63. doi: 10.1113/jphysiol.2006.106716 PubMedCrossRefGoogle Scholar
  44. 44.
    Ma X, Abboud FM, Chapleau MW (2001) A novel effect of angiotensin on renal sympathetic nerve activity in mice. J Hypertens 19(3 Pt 2):609–618. doi: 10.1097/00004872-200103001-00014 PubMedCrossRefGoogle Scholar
  45. 45.
    Ma X et al (2001) Angiotensin selectively activates a subpopulation of postganglionic sympathetic neurons in mice. Circ Res 88(8):787–793. doi: 10.1161/hh0801.089542 PubMedCrossRefGoogle Scholar
  46. 46.
    Fletcher EC, Bao G, Li R (1999) Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34(2):309–314PubMedGoogle Scholar
  47. 47.
    Fletcher EC, Orolinova N, Bader M (2002) Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 92(2):627–633PubMedGoogle Scholar
  48. 48.
    Somers VK, Mark AL, Abboud FM (1991) Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87(6):1953–1957. doi: 10.1172/JCI115221 PubMedCrossRefGoogle Scholar
  49. 49.
    Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295(4):327–334. doi: 10.1097/00000441-198804000-00019 PubMedCrossRefGoogle Scholar
  50. 50.
    Cooper VL et al (2007) Daytime variability of baroreflex function in patients with obstructive sleep apnoea: implications for hypertension. Exp Physiol 92(2):391–398. doi: 10.1113/expphysiol.2006.035584 PubMedCrossRefGoogle Scholar
  51. 51.
    Brooks D et al (1999) Baroreflex control of heart rate in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 159(4 Pt 1):1293–1297PubMedGoogle Scholar
  52. 52.
    Li Z et al (1996) Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 79(4):802–811PubMedGoogle Scholar
  53. 53.
    Peng YJ et al (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci USA 100(17):10073–10078. doi: 10.1073/pnas.1734109100 PubMedCrossRefGoogle Scholar
  54. 54.
    Rouwet EV et al (2002) Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 105(23):2791–2796. doi: 10.1161/01.CIR.0000017497.47084.06 PubMedCrossRefGoogle Scholar
  55. 55.
    Phillips SA et al (2006) Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. J Appl Physiol 100(4):1117–1123. doi: 10.1152/japplphysiol.00994.2005 PubMedCrossRefGoogle Scholar
  56. 56.
    Phillips SA et al (2004) Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 286(1):H388–H393. doi: 10.1152/ajpheart.00683.2003 PubMedCrossRefGoogle Scholar
  57. 57.
    Allahdadi KJ, Walker BR, Kanagy NL (2005) Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension 45(4):705–709. doi: 10.1161/01.HYP.0000153794.52852.04 PubMedCrossRefGoogle Scholar
  58. 58.
    Kanagy NL, Walker BR, Nelin LD (2001) Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension 37(2 Part 2):511–515PubMedGoogle Scholar
  59. 59.
    Sforza E et al (1996) Role of chemosensitivity in intrathoracic pressure changes during obstructive sleep apnea. Am J Respir Crit Care Med 154(6 Pt 1):1741–1747PubMedGoogle Scholar
  60. 60.
    Chen L, Scharf SM (1997) Comparative hemodynamic effects of periodic obstructive and simulated central apneas in sedated pigs. J Appl Physiol 83(2):485–494PubMedGoogle Scholar
  61. 61.
    Chen L, Shi Q, Scharf SM (2000) Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure. J Appl Physiol 88(3):1051–1060PubMedGoogle Scholar
  62. 62.
    Hall MJ et al (1998) Magnitude and time course of hemodynamic responses to Mueller maneuvers in patients with congestive heart failure. J Appl Physiol 85(4):1476–1484PubMedGoogle Scholar
  63. 63.
    Fletcher EC et al (1999) Pulmonary edema develops after recurrent obstructive apneas. Am J Respir Crit Care Med 160((5 Pt 1)):1688–1696PubMedGoogle Scholar
  64. 64.
    Bradley TD, Floras JS (2003) Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation 107(12):1671–1678. doi: 10.1161/01.CIR.0000061757.12581.15 PubMedCrossRefGoogle Scholar
  65. 65.
    Naughton MT (1998) Impact of treatment of sleep apnoea on left ventricular function in congestive heart failure. Thorax 53(Suppl 3):S37–S40PubMedCrossRefGoogle Scholar
  66. 66.
    Tkacova R et al (1998) Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation 98(21):2269–2275PubMedGoogle Scholar
  67. 67.
    Koller A, Huang A (1994) Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ Res 74(3):416–421PubMedGoogle Scholar
  68. 68.
    Brevetti G et al (2003) Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 108(17):2093–2098. doi: 10.1161/01.CIR.0000095273.92468.D9 PubMedCrossRefGoogle Scholar
  69. 69.
    Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809. doi: 10.1038/362801a0 PubMedCrossRefGoogle Scholar
  70. 70.
    Juonala M et al (2007) Brachial artery flow-mediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation 116(12):1367–1373. doi: 10.1161/CIRCULATIONAHA.107.690016 PubMedCrossRefGoogle Scholar
  71. 71.
    Ungvari Z et al (2002) Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: morphological and functional evidence for increased peroxynitrite formation. Am J Pathol 161(1):145–153PubMedGoogle Scholar
  72. 72.
    Corretti MC et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265. doi: 10.1016/S0735-1097(01)01746-6 PubMedCrossRefGoogle Scholar
  73. 73.
    Kato M et al (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102(21):2607–2610PubMedGoogle Scholar
  74. 74.
    Ip MS et al (2004) Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 169(3):348–353. doi: 10.1164/rccm.200306-767OC PubMedCrossRefGoogle Scholar
  75. 75.
    Nieto FJ et al (2004) Sleep apnea and markers of vascular endothelial function in a large community sample of older adults. Am J Respir Crit Care Med 169(3):354–360. doi: 10.1164/rccm.200306-756OC PubMedCrossRefGoogle Scholar
  76. 76.
    Tahawi Z et al (2001) Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol 90(5):2007–2013, discussion 2000Google Scholar
  77. 77.
    Ip MS et al (2000) Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 162(6):2166–2171PubMedGoogle Scholar
  78. 78.
    Geny B et al (2006) Comments on point-counterpoint “flow-mediated dilation does/does not reflect nitric oxide-mediated endothelial function”. J Appl Physiol 100(1):362. doi: 10.1152/japplphysiol.01313.2005 PubMedCrossRefGoogle Scholar
  79. 79.
    Wolin MS et al (1998) Oxidant—nitric oxide signalling mechanisms in vascular tissue. Biochemistry. Biokhimiia 63(7):810–816PubMedGoogle Scholar
  80. 80.
    Ogita H, Liao J (2004) Endothelial function and oxidative stress. Endothelium 11(2):123–132. doi: 10.1080/10623320490482664 PubMedCrossRefGoogle Scholar
  81. 81.
    Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122(4):339–352. doi: 10.1007/s00418-004-0696-7 PubMedCrossRefGoogle Scholar
  82. 82.
    Grebe M et al (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173(8):897–901. doi: 10.1164/rccm.200508-1223OC PubMedCrossRefGoogle Scholar
  83. 83.
    El Solh AA et al (2006) Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur Respir J 27(5):997–1002PubMedGoogle Scholar
  84. 84.
    Pieper GM, Dembny K, Siebeneich W (1998) Long-term treatment in vivo with NOX-101, a scavenger of nitric oxide, prevents diabetes-induced endothelial dysfunction. Diabetologia 41(10):1220–1226. doi: 10.1007/s001250051055 PubMedCrossRefGoogle Scholar
  85. 85.
    Katayama Y et al (2004) Oral vitamin C ameliorates smoking-induced arterial wall stiffness in healthy volunteers. J Atheroscler Thromb 11(6):354–357PubMedGoogle Scholar
  86. 86.
    Svatikova A et al (2004) Circulating free nitrotyrosine in obstructive sleep apnea. Am J Physiol Regul Integr Comp Physiol 287(2):R284–R287. doi: 10.1152/ajpregu.00241.2004 PubMedGoogle Scholar
  87. 87.
    Cosentino F et al (2008) Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart (British Cardiac Society) 94(4):487–492. doi: 10.1136/hrt.2007.122184 Google Scholar
  88. 88.
    Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14(8):323–327. doi: 10.1016/j.tcm.2004.10.003 PubMedCrossRefGoogle Scholar
  89. 89.
    Stroes E et al (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99(1):41–46. doi: 10.1172/JCI119131 PubMedCrossRefGoogle Scholar
  90. 90.
    Heller R et al (1999) L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. J Biol Chem 274(12):8254–8260. doi: 10.1074/jbc.274.12.8254 PubMedCrossRefGoogle Scholar
  91. 91.
    Zweier JL et al (1994) Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am J Physiol 266(3 Pt 1):C700–C708PubMedGoogle Scholar
  92. 92.
    Zweier JL (1998) Free radical generation in human endothelial cells exposed to anoxia and reoxygenation. Transplant Proc 30(8):4228–4232. doi: 10.1016/S0041-1345(98)01399-2 PubMedCrossRefGoogle Scholar
  93. 93.
    Houston M et al (1999) Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 274(8):4985–4994. doi: 10.1074/jbc.274.8.4985 PubMedCrossRefGoogle Scholar
  94. 94.
    Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91(6):2546–2551. doi: 10.1172/JCI116491 PubMedCrossRefGoogle Scholar
  95. 95.
    Mervaala EM et al (2001) Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 37(2 Part 2):414–418PubMedGoogle Scholar
  96. 96.
    Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606. doi: 10.1113/jphysiol.2003.055913 PubMedCrossRefGoogle Scholar
  97. 97.
    Butler R et al (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35(3):746–751PubMedGoogle Scholar
  98. 98.
    Farquharson CA et al (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106(2):221–226. doi: 10.1161/01.CIR.0000022140.61460.1D PubMedCrossRefGoogle Scholar
  99. 99.
    Guthikonda S et al (2004) Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 93(5):664–668. doi: 10.1016/j.amjcard.2003.11.046 PubMedCrossRefGoogle Scholar
  100. 100.
    Ohike Y et al (2005) Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure—possible involvement of nitric oxide and asymmetric NG, NG-dimethylarginine. Circ J 69(2):221–226. doi: 10.1253/circj.69.221 PubMedCrossRefGoogle Scholar
  101. 101.
    Suzuki YJ et al (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40(10):1683–1692. doi: 10.1016/j.freeradbiomed.2006.01.008 PubMedCrossRefGoogle Scholar
  102. 102.
    Svatikova A et al (2005) Oxidative stress in obstructive sleep apnoea. Eur Heart J 26(22):2435–2439. doi: 10.1093/eurheartj/ehi440 PubMedCrossRefGoogle Scholar
  103. 103.
    Wali SO et al (1998) Susceptibility of LDL to oxidative stress in obstructive sleep apnea. Sleep 21(3):290–296PubMedGoogle Scholar
  104. 104.
    Ozturk L et al (2003) Lipid peroxidation and osmotic fragility of red blood cells in sleep-apnea patients. Clin Chim Acta 332(1–2):83–88. doi: 10.1016/S0009-8981(03)00126-8 PubMedCrossRefGoogle Scholar
  105. 105.
    Alzoghaibi MA, Bahammam AS (2005) Lipid peroxides, superoxide dismutase and circulating IL-8 and GCP-2 in patients with severe obstructive sleep apnea: a pilot study. Sleep Breath 9(3):119–126. doi: 10.1007/s11325-005-0022-1 PubMedCrossRefGoogle Scholar
  106. 106.
    Lavie L, Vishnevsky A, Lavie P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27(1):123–128PubMedGoogle Scholar
  107. 107.
    Barcelo A et al (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16(4):644–647. doi: 10.1034/j.1399-3003.2000.16d13.x PubMedCrossRefGoogle Scholar
  108. 108.
    Christou K et al (2003) Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath 7(3):105–110. doi: 10.1007/s11325-003-0105-9 PubMedCrossRefGoogle Scholar
  109. 109.
    Christou K et al (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4(3):225–228. doi: 10.1016/S1389-9457(02)00253-8 PubMedCrossRefGoogle Scholar
  110. 110.
    Christou K et al (2008) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med (in press). doi: 10.1016/j.sleep.2007.10.011
  111. 111.
    Carpagnano GE et al (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122(4):1162–1167. doi: 10.1378/chest.122.4.1162 PubMedCrossRefGoogle Scholar
  112. 112.
    Carpagnano GE et al (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392. doi: 10.1378/chest.124.4.1386 PubMedCrossRefGoogle Scholar
  113. 113.
    Tangirala RK et al (2001) Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 276(1):261–266. doi: 10.1074/jbc.M003324200 PubMedCrossRefGoogle Scholar
  114. 114.
    Pratico D (1999) F(2)-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo. Atherosclerosis 147(1):1–10. doi: 10.1016/S0021-9150(99)00257-9 PubMedCrossRefGoogle Scholar
  115. 115.
    Pratico D et al (1997) Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest 100(8):2028–2034. doi: 10.1172/JCI119735 PubMedCrossRefGoogle Scholar
  116. 116.
    Tan KC et al (2006) HDL dysfunction in obstructive sleep apnea. Atherosclerosis 184(2):377–382. doi: 10.1016/j.atherosclerosis.2005.04.024 PubMedCrossRefGoogle Scholar
  117. 117.
    Yamauchi M et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679. doi: 10.1378/chest.127.5.1674 PubMedCrossRefGoogle Scholar
  118. 118.
    Park AM, Suzuki YJ (2007) Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol 102(5):1806–1814. doi: 10.1152/japplphysiol.01291.2006 PubMedCrossRefGoogle Scholar
  119. 119.
    Takahashi K et al (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10(4):715–726. doi: 10.1089/ars.2007.1949 PubMedCrossRefGoogle Scholar
  120. 120.
    Barcelo A et al (2006) Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur Respir J 27(4):756–760. doi: 10.1183/09031936.06.00067605 PubMedCrossRefGoogle Scholar
  121. 121.
    Teramoto S et al (2007) Improvement of endothelial function with allopurinol may occur in selected patients with OSA: effect of age and sex. Eur Respir J 29(1):216–217, author reply 217–218. doi: 10.1183/09031936.00104806
  122. 122.
    Veasey SC et al (2004) Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep 27(2):194–201PubMedGoogle Scholar
  123. 123.
    Xu W et al (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126(2):313–323. doi: 10.1016/j.neuroscience.2004.03.055 PubMedCrossRefGoogle Scholar
  124. 124.
    Schulz R et al (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162(2 Pt 1):566–570PubMedGoogle Scholar
  125. 125.
    Row BW et al (2004) Platelet-activating factor receptor-deficient mice are protected from experimental sleep apnea-induced learning deficits. J Neurochem 89(1):189–196. doi: 10.1111/j.1471-4159.2004.02352.x PubMedCrossRefGoogle Scholar
  126. 126.
    Troncoso Brindeiro CM et al (2007) Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol 293(5):H2971–H2976. doi: 10.1152/ajpheart.00219.2007 PubMedCrossRefGoogle Scholar
  127. 127.
    Htoo AK et al (2006) Activation of nuclear factor kappaB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath 10(1):43–50. doi: 10.1007/s11325-005-0046-6 PubMedCrossRefGoogle Scholar
  128. 128.
    Nacher M et al (2007) Recurrent obstructive apneas trigger early systemic inflammation in a rat model of sleep apnea. Respir Physiol Neurobiol 155(1):93–96. doi: 10.1016/j.resp.2006.06.004 PubMedCrossRefGoogle Scholar
  129. 129.
    Vgontzas AN et al (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82(5):1313–1316. doi: 10.1210/jc.82.5.1313 PubMedCrossRefGoogle Scholar
  130. 130.
    Kataoka T et al (2004) The effect of surgical treatment of obstructive sleep apnea syndrome on the plasma TNF-alpha levels. Tohoku J Exp Med 204(4):267–272. doi: 10.1620/tjem.204.267 PubMedCrossRefGoogle Scholar
  131. 131.
    Punjabi NM et al (2007) Elevated levels of neopterin in sleep-disordered breathing. Chest 132(4):1124–1130. doi: 10.1378/chest.07-0743 PubMedCrossRefGoogle Scholar
  132. 132.
    Yudkin JS et al (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2):209–214. doi: 10.1016/S0021-9150(99)00463-3 PubMedCrossRefGoogle Scholar
  133. 133.
    Ridker PM et al (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772PubMedGoogle Scholar
  134. 134.
    Lindmark E et al (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. J Am Med Assoc 286(17):2107–2113. doi: 10.1001/jama.286.17.2107 CrossRefGoogle Scholar
  135. 135.
    Haverkate F et al (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349(9050):462–466. doi: 10.1016/S0140-6736(96)07591-5 Google Scholar
  136. 136.
    Lindahl B et al (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. New Engl J Med 343(16):1139–1147. doi: 10.1056/NEJM200010193431602
  137. 137.
    Burke AP et al (2002) Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 105(17):2019–2023. doi: 10.1161/01.CIR.0000015507.29953.38 PubMedCrossRefGoogle Scholar
  138. 138.
    Shamsuzzaman AS et al (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462–2464. doi: 10.1161/01.CIR.0000018948.95175.03 PubMedCrossRefGoogle Scholar
  139. 139.
    Larkin EK et al (2005) Variation of C-reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration. Circulation 111(15):1978–1984. doi: 10.1161/01.CIR.0000161819.76138.5E PubMedCrossRefGoogle Scholar
  140. 140.
    Yokoe T et al (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134. doi: 10.1161/01.CIR.0000052627.99976.18 PubMedCrossRefGoogle Scholar
  141. 141.
    Lefer AM (1999) Role of the beta2-integrins and immunoglobulin superfamily members in myocardial ischemia-reperfusion. Ann Thorac Surg 68(5):1920–1923. doi: 10.1016/S0003-4975(99)01017-6 PubMedCrossRefGoogle Scholar
  142. 142.
    Minoguchi K et al (2005) Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 172(5):625–630. doi: 10.1164/rccm.200412-1652OC PubMedCrossRefGoogle Scholar
  143. 143.
    Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165(7):934–939PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The Ohio State University Sleep Heart ProgramThe Ohio State UniversityColumbusUSA
  2. 2.Division of Pulmonary, Critical Care, and Sleep MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Departments of Pediatrics and Internal MedicineUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations