Heart Failure Reviews

, 13:121 | Cite as

Ultrastructural definition of apoptosis in heart failure

  • Eloisa Arbustini
  • Agnese Brega
  • Jagat Narula


Cardiac myocytes die through apoptosis, oncosis, and autophagy. Apoptosis affects single cells and is morphologically characterized by nuclear fragmentation with generation of apoptotic bodies that can be seen either within dying cells or free in the interstitial spaces. Dead myocytes are removed by macrophages through phagocytosis without triggering inflammation. The circulating markers of myocyte necrosis are not increased by apoptosis. The morphologic changes of the induction and early execution phases are seen at electron microscopy while late fragmentation is visible on both light and electron microscopy. Immunoelectron microscopy provides combined functional and structural information showing cytochrome c immuno-labelling release from mitochondria, TUNEL labelling of apoptotic nuclei, annexin V translocation in the outer plasma cell layer. Oncosis is characterized by specific morphologic features that may coexist with apoptosis, especially in ischemic myocardium. Autophagy is a defense process that is associated with significant myocardial damage and necrosis when removal of the lysosomal content is impaired. Morphological features of apoptosis, oncosis, and autophagocytosis may coexist at the same time. Although dead myocytes showing characteristics of autophagy and apoptosis are rarely observed in human decompensated hearts, autophagic vacuoles, and early apoptotic changes may be seen more often in morphologically viable myocytes. Such features may occur in failing hearts of both ischemic and non-ischemic etiology. The shared mode of cardiac myocyte death in failing human hearts of different etiologies suggests that preservation of myocyte integrity may be possible by similar therapeutic strategies.


Heart failure Electron microscopy Apoptosis Oncosis Autophagocytosis 



This study was supported by grants “Research on Inherited Cardiomyopathies” from the Cariplo Foundation (Milano, Italy), and by grants on Dilated Cardiomyopathies from the Ministry of Health (Rome, Italy) to the Foundation IRCCS Policlinico San Matteo.


  1. 1.
    Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724PubMedCrossRefGoogle Scholar
  2. 2.
    Kunapuli S, Rosanio S, Schwarz ER (2006) How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12:381–391PubMedCrossRefGoogle Scholar
  3. 3.
    Takemura G, Fujiwara H (2006) Morphological aspects of apoptosis in heart diseases. J Cell Mol Med 10:56–75PubMedCrossRefGoogle Scholar
  4. 4.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15PubMedGoogle Scholar
  5. 5.
    Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T, Nishigaki K, Noda T, Fujiwara T, Fukuda K, Minatoguchi S, Fujiwara H (1999) Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 99:2757–2764PubMedGoogle Scholar
  6. 6.
    Bartunek J, Vanderheyden M, Knaapen MW, Tack W, Kockx MM, Goethals M (2002) Deoxyribonucleic acid damage/repair proteins are elevated in the failing human myocardium due to idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:1097–1103PubMedCrossRefGoogle Scholar
  7. 7.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedGoogle Scholar
  8. 8.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng G, Wessels A, Gourdien RG, Thompson RP (2002) Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart. Dev Dynam 223:119–133CrossRefGoogle Scholar
  10. 10.
    Su TT (2000) The regulation of cell growth and proliferation during organogenesis. In Vivo 14:141–148PubMedGoogle Scholar
  11. 11.
    Henso PM, Hume DA (2006) Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:244–250CrossRefGoogle Scholar
  12. 12.
    Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecompte D, Tedgui A (2001) Age an gender effects on cardiomyocyte apoptosis in the normal human heart. J Geront A: Biol Sci Med Sci 56:M719–M723Google Scholar
  13. 13.
    Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966PubMedCrossRefGoogle Scholar
  14. 14.
    Moretti L, Cha YI, NiermannKJ, Lu B (2007) Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6:793–798PubMedGoogle Scholar
  15. 15.
    Nguyen ML, Blaho JA (2007) Apoptosis during herpes simplex virus infection. Adv Virus Res 69:67–97PubMedCrossRefGoogle Scholar
  16. 16.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628PubMedCrossRefGoogle Scholar
  17. 17.
    Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331PubMedGoogle Scholar
  18. 18.
    Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P (1995) Stretch induced programmmed cell death. J Clin Invest 96:2247–2259PubMedCrossRefGoogle Scholar
  19. 19.
    Grazette LP, Rosenzweig A (2005) Role of apoptosis in heart failure. Heart Fail Clin 1:251–261PubMedCrossRefGoogle Scholar
  20. 20.
    Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006) Mechanisms of disease: apoptosis in heart failure-seeing hope in death. Nature Clin Pract Cardiovasc Med 3:681–688CrossRefGoogle Scholar
  21. 21.
    Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M (2001) Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes. Cardiol Clin 19:113–126PubMedCrossRefGoogle Scholar
  22. 22.
    Hunter AL, Choy JC, Granville DJ (2005) Detection of apoptosis in cardiovascular diseases. Methods Mol Med 112:277–289PubMedGoogle Scholar
  23. 23.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  24. 24.
    Van Heerde WL, Robert-Offerman S, Dumont E, Hofstra R, Doevendans PA, Smits JF, Daemen MJ, Reuteligsperger CP (2000) Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc Res 45:549–559PubMedCrossRefGoogle Scholar
  25. 25.
    Jans SW, van Bilsen M, Reutelingsperger CP, Borgers M, de Jong YF, van der Vusse GJ (1995) Annexin V in the adult rat heart: isolation, localization and quantitation. J Mol Cell Cardiol 27:335–348PubMedCrossRefGoogle Scholar
  26. 26.
    Zaunreiter M, Brandstatter R, Donato R, Hermann A (2005) Localization of annexins in the retina of the rainbow trout-light and electron microscopical investigations. Brain Res 1032:1–10PubMedCrossRefGoogle Scholar
  27. 27.
    Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96:8144–8149PubMedCrossRefGoogle Scholar
  28. 28.
    McCarty NJ, Evan GJ (1998) Methods for detecting and quantifying apoptosis. Curr Top Dev Biol 36:259–278Google Scholar
  29. 29.
    Savill J, Fadok V (2000) Corpes clearing defines the meaning of cell death. Nature 407:784–788PubMedCrossRefGoogle Scholar
  30. 30.
    Kietselaer BL, Reutelingsperger CP, Boersma HH, Heidendal GA, Liem IH, Crijns HJ, Narula J, Hofstra R (2007) Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J Nucl Med 48:562–567PubMedCrossRefGoogle Scholar
  31. 31.
    Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocites in vitro. J Mol Cell Cardiol 37:837–846PubMedCrossRefGoogle Scholar
  32. 32.
    Rivard AL, Steer CJ, Kren BT, Rodrigues CM, Castro RE, Bianco RW, Low WC (2007) Administration of Tauroursodeoxycholic Acid (TUDCA) reduces apoptosis following myocardial infarction in rat. Am J Clin Med 35:279–295CrossRefGoogle Scholar
  33. 33.
    Dong Z, Saikumar P, Weiberg JM, Venkatachalam MA (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 151:1205–1213PubMedGoogle Scholar
  34. 34.
    Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H (1998) Apoptotic myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 98:1422–1430PubMedGoogle Scholar
  35. 35.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898PubMedCrossRefGoogle Scholar
  36. 36.
    Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151PubMedGoogle Scholar
  37. 37.
    Ogden CA, Elkon KB (2006) Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 9:120–142PubMedGoogle Scholar
  38. 38.
    Takashi E, Ashraf M (2000) Pathologic assessment of myocardial cell necrosis and apoptosis after ischemia and reperfusion with molecular and morphological markers. J Mol Cell Cardiol 32:209–224PubMedCrossRefGoogle Scholar
  39. 39.
    Waller BF (1988) The pathology of acute myocardial infarction: definition, location, pathogenesis, effect of reperfusion, complications, and sequelae. Cardiol Clin 6:1–28PubMedGoogle Scholar
  40. 40.
    Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200PubMedCrossRefGoogle Scholar
  41. 41.
    Goldsten MA (1979) Ultrastructure of the ischemic myocardium. Cardiovasc Res Cent Bull 18:1–33Google Scholar
  42. 42.
    Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedCrossRefGoogle Scholar
  43. 43.
    Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2:524–531PubMedCrossRefGoogle Scholar
  44. 44.
    Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH (2003) Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 16(278):17636–17645CrossRefGoogle Scholar
  45. 45.
    Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27:409–420PubMedCrossRefGoogle Scholar
  46. 46.
    Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161PubMedCrossRefGoogle Scholar
  47. 47.
    Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCrossRefGoogle Scholar
  48. 48.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995PubMedCrossRefGoogle Scholar
  49. 49.
    Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennel DJ, Vatner DE, Camici PG, Vatner SF (2004) Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 95:433–440PubMedCrossRefGoogle Scholar
  50. 50.
    Kim SJ, Depre C, Vatner SF (2003) Novel mechanisms mediating stunned myocardium. Heart Fail Rev 8:143–153PubMedCrossRefGoogle Scholar
  51. 51.
    Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Matsui GJJ, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. PNAS 102:13807–13812PubMedCrossRefGoogle Scholar
  52. 52.
    Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autopagy. Cardiovasc Drugs Ther 20:445–462PubMedCrossRefGoogle Scholar
  53. 53.
    Casey TM, Arthur PG, Bogoyevitch MA (2007) Necrotic death without mitochondrial dysfunction-delayed death of cardiac myocytes following oxidative stress. Biochim Biophys Acta 1773:342–351PubMedCrossRefGoogle Scholar
  54. 54.
    Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381PubMedCrossRefGoogle Scholar
  55. 55.
    Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMIS 106:265–276PubMedCrossRefGoogle Scholar
  56. 56.
    Spoerri PE. Glees P, El Ghazzawi E (1974) Accumulation of lipofuscin in the myocardium of senile guinea pigs: dissolution and removal of lipofuscin following dimethylaminoethyl p-chlorophenoxyacetate administration. An electron microscopic study. Mech Ageing Dev 3:311–321CrossRefGoogle Scholar
  57. 57.
    Grune T. Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534Google Scholar
  58. 58.
    Terman A, Brunk UT (2005) The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ 14:107–114PubMedCrossRefGoogle Scholar
  59. 59.
    Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJ, Katzeff H (2005) Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic Biol Med 38:1093–1101PubMedCrossRefGoogle Scholar
  60. 60.
    Arbustini E, Diegoli M, Morbini P, Dal Bello B, Banchieri N, Pilotto A, Magani F, Grasso M, Narula J, Gavazzi A, Vigano M, Tavazzi L (2000) Prevalence and characteristics of dystrophin defects in adult male patients with dilated cardiomyopathy. J Am Coll Cardiol 35:1760–1768PubMedCrossRefGoogle Scholar
  61. 61.
    Deconinck N, Dan B (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36:1–7PubMedCrossRefGoogle Scholar
  62. 62.
    Tews DS (2006) Characterization of initiator and effector caspase expressions in dystrophinopathies. Neuropathology 26:24–31PubMedCrossRefGoogle Scholar
  63. 63.
    Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17:386–396PubMedCrossRefGoogle Scholar
  64. 64.
    Matsumura K, Saito F, Yamada H, Hase A, Sunada Y, Shimizu T (1999) Sarcoglycan complex: a muscular supporter of dystroglycan-dystrophin interplay? Cell Mol Biol 45:751–762PubMedGoogle Scholar
  65. 65.
    Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE, Towbin JA (2000) Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. Clin Invest 106:655–662CrossRefGoogle Scholar
  66. 66.
    Hack AA, Ly CT, Jiang F, Clendenin CJ, Sigrist KS, Wollmann RL, McNally EM (1998) Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J Cell Biol 142:1279–1287PubMedCrossRefGoogle Scholar
  67. 67.
  68. 68.
    Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM (2007) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Ageing Cell 6:139–153CrossRefGoogle Scholar
  69. 69.
    Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441–1455PubMedCrossRefGoogle Scholar
  70. 70.
    Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378PubMedGoogle Scholar
  71. 71.
    Arbustini E, Pilotto A, Repetto A, Grasso M, Negri A, Diegoli M, Campana C, Scelsi L, Baldini E, Gavazzi A, Tavazzi L (2002) Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol 39:981–990PubMedCrossRefGoogle Scholar
  72. 72.
    Verga L, Concardi M, Pilotto A, Bellini O, Pasotti M, Repetto A, Tavazzi L, Arbustini E (2003) Loss of lamin A/C expression revealed by immuno-electron microscopy in dilated cardiomyopathy with atrioventricular block caused by LMNA gene defects. Virchows Arch 443:664–671PubMedCrossRefGoogle Scholar
  73. 73.
    Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139:S70–S85PubMedCrossRefGoogle Scholar
  74. 74.
    Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488PubMedCrossRefGoogle Scholar
  75. 75.
    Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82PubMedCrossRefGoogle Scholar
  76. 76.
    Brega A, Narula J, Arbustini E (2001) Functional, structural and genetic mitochondrial abnormalities in myocardial diseases. J Nuclear Cardiol 8:89–97CrossRefGoogle Scholar
  77. 77.
    Arnheim N, Cortopassi G (1992) Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat Res 275:157–167PubMedGoogle Scholar
  78. 78.
    Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. J Am Med Assoc 266:1812–1816CrossRefGoogle Scholar
  79. 79.
    Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of Accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. PNAS 89:7370–7374PubMedCrossRefGoogle Scholar
  80. 80.
    Ito T, Hattori K, Obayashi T, Tanaka M, Sugiyama S, Ozawa T (1992) Mitochondrial DNA mutations in cardiomyopathy. Jpn Circ J 56:1045–1053PubMedGoogle Scholar
  81. 81.
    Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovas Res 57:147–157CrossRefGoogle Scholar
  83. 83.
    Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, Banchieri N, Bellini O, Dal Bello B, Pilotto A, Magrini G, Campana C, Fortina P, Gavazzi A, Narula J, Vigano M (1998) Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 153:1501–1510PubMedGoogle Scholar
  84. 84.
    Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112:3451–3461PubMedCrossRefGoogle Scholar
  85. 85.
    Barth PG, Scholte HR, Berden JA, Van Der Klei-Van Moorsel JM, Luyt-Houwen IEM, Van’T Veer-Korthof ETH, Van Der Harten JJ, Sobotka-Plojhar MA (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle, and neutrophil leukocytes. J Neurol Sci 62:327–355PubMedCrossRefGoogle Scholar
  86. 86.
    Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D (1996) A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nat Genet 12:385–389PubMedCrossRefGoogle Scholar
  87. 87.
    Kuijpers TW, Maianski NA, Tool AT, Becker K, Plecko B, Valianpour F, Wanders RJ, Pereira R, Van Hove J, Verhoeven AJ, Roos D, Baas F, Barth PG (2004) Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis. Blood 103:3915–3923PubMedCrossRefGoogle Scholar
  88. 88.
    Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 13:1308–1320CrossRefGoogle Scholar
  89. 89.
    Ino T, Nishimoto K, Okubo M, Akimoto K, Yabuta K, Kawai S, Okada R, Sueyoshi N (1997) Apoptosis as a possible cause of wall thinning in end-stage hypertrophic cardiomyopathy. Am J Cardiol 79:1137–1141PubMedCrossRefGoogle Scholar
  90. 90.
    Koda M, Takemura G, Kanoh M, Hayakawa K, Kawase Y, Maruyama R, Li Y, Minatoguchi S, Fujiwara T, Fujiwara H (2003) Myocytes positive for in situ markers for DNA breaks in human hearts which are hypertrophic, but neither failed nor dilated: a manifestation of cardiac hypertrophy rather than failure. J Pathol 199:229–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Eloisa Arbustini
    • 1
    • 2
  • Agnese Brega
    • 3
    • 4
  • Jagat Narula
    • 5
  1. 1.Centro Malattie Genetiche CardiovascolariFondazione IRCCSPaviaItaly
  2. 2.Centro Malattie Genetiche CardiovascolariFondazione IRCCS, Policlinico San MatteoPaviaItaly
  3. 3.Department of Biology and Genetics for Medical SciencesUniversity of MilanMilanItaly
  4. 4.Department of Genetics and MicrobiologyUniversity of PaviaPaviaItaly
  5. 5.School of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations