Heart Failure Reviews

, Volume 11, Issue 1, pp 83–92 | Cite as

Systemic inflammation in heart failure – The whys and wherefores

  • Arne Yndestad
  • Jan Kristian Damås
  • Erik Øie
  • Thor Ueland
  • Lars Gullestad
  • Pål Aukrust


Patients with chronic heart failure (HF) are characterized by systemic inflammation, as evident by raised circulating levels of several inflammatory cytokines with increasing levels according to the degree of disease severity. In addition to the myocardium itself, several tissues and cells can contribute to this inflammation, including leukocytes, platelets, tissue macrophages and endothelial cells. Although the mechanisms for the systemic inflammation is unknown, both infectious (e.g., endotoxins) and non-infectious (e.g., oxidative stress and hemodynamic overload) events could be operating, also including activation of Toll-like receptors as well as interaction with the neurohormone system. A growing body of evidence suggests that this systemic inflammation in chronic HF may play a role in the development and progression of this disorder, not only by promoting myocardial dysfunction, but also by inducing pathogenic consequences in other organs and tissues, thereby contributing to additional aspects of the HF syndrome such as cachexia, endothelial dysfunction and anemia. Although this inappropriate immune activation and inflammation could represent a new target for therapy in patients with chronic HF, the anti-tumor necrosis factor trials have been disappointing, and future research in this area will have to more precisely identify the most important mechanisms and actors in the immunopathogenesis of chronic HF in order to develop better immunomodulating agents for this disorder.


Heart failure Inflammation Cytokine Pathogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007–18PubMedCrossRefGoogle Scholar
  2. 2.
    Mann DL, Deswal A, Bozkurt B, Torre-Amione G. New therapeutics for chronic heart failure. Annu Rev Med. 2002;53:59–74PubMedCrossRefGoogle Scholar
  3. 3.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241PubMedCrossRefGoogle Scholar
  4. 4.
    Adamopoulos S, Parissis JT, Kremastinos DT. A glossary of circulating cytokines in chronic heart failure. Eur J Heart Fail 2001;3:517–26PubMedCrossRefGoogle Scholar
  5. 5.
    Aukrust P, Ueland T, Lien E, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:376–82PubMedCrossRefGoogle Scholar
  6. 6.
    Aukrust P, Ueland T, Müller F, et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 1998;97:1136–43PubMedGoogle Scholar
  7. 7.
    Damås JK, Gullestad L, Ueland T, et al. CXC-chemokines, a new group of cytokines in congestive heart failure—possible role of platelets and monocytes. Cardiovasc Res 2000;45:428–36PubMedCrossRefGoogle Scholar
  8. 8.
    Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964–71PubMedCrossRefGoogle Scholar
  9. 9.
    Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–6PubMedCrossRefGoogle Scholar
  10. 10.
    Deswal A, Petersen NJ, Feldman AM, et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103:2055–59PubMedGoogle Scholar
  11. 11.
    Ueland T, Kjekshus J, Froland SS, et al. Plasma levels of soluble tumor necrosis factor receptor type I during the acute phase following complicated myocardial infarction predicts survival in high-risk patients. J Am Coll Cardiol 2005;46:2018–21PubMedCrossRefGoogle Scholar
  12. 12.
    Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704–11PubMedGoogle Scholar
  13. 13.
    Eiken HG, Øie E, Damås JK, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 2001;31:389–97PubMedCrossRefGoogle Scholar
  14. 14.
    Damås JK, Eiken HG, Øie E, et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 2000;47:778–87PubMedCrossRefGoogle Scholar
  15. 15.
    Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001;38:307–14PubMedCrossRefGoogle Scholar
  16. 16.
    Deliargyris EN, Raymond RJ, Theoharides TC, et al. Sites of interleukin-6 release in patients with acute coronary syndromes and in patients with congestive heart failure. Am J Cardiol 2000;86:913–18PubMedCrossRefGoogle Scholar
  17. 17.
    Tsutamoto T, Wada A, Ohnishi M, et al. Transcardiac increase in tumor necrosis factor-alpha and left ventricular end-diastolic volume in patients with dilated cardiomyopathy. Eur J Heart Fail 2004;6:173–80PubMedCrossRefGoogle Scholar
  18. 18.
    Ueland T, Aukrust P, Yndestad A, et al. Soluble CD40 ligand in acute and chronic heart failure. Eur Heart J 2005;26:1101–7PubMedCrossRefGoogle Scholar
  19. 19.
    Damås JK, Gullestad L, Aass H, et al. Enhanced gene expression of chemokines and their corresponding receptors in mononuclear blood cells in chronic heart failure—modulatory effect of intravenous immunoglobulin. J Am Coll Cardiol 2001;38:187–93PubMedCrossRefGoogle Scholar
  20. 20.
    Yndestad A, Damås JK, Eiken HG, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res 2002;54:175–82PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao SP, Xu TD. Elevated tumor necrosis factor alpha of blood mononuclear cells in patients with congestive heart failure. Int J Cardiol 1999;71:257–61PubMedCrossRefGoogle Scholar
  22. 22.
    Conraads VM, Bosmans JM, Schuerwegh AJ, et al. Intracellular monocyte cytokine production and CD 14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant 2005;24:854–59PubMedCrossRefGoogle Scholar
  23. 23.
    Yndestad A, Holm AM, Müller F, et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc Res2003;60:141–46PubMedCrossRefGoogle Scholar
  24. 24.
    Ueland T, Yndestad A, Øie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 2005;111:2461–68PubMedCrossRefGoogle Scholar
  25. 25.
    Weber C. Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 2005;96:612–16PubMedCrossRefGoogle Scholar
  26. 26.
    Tousoulis D, Charakida M, Stefanadis C. Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. Int J Cardiol 2005;100:347–53PubMedCrossRefGoogle Scholar
  27. 27.
    Colombo PC, Banchs JE, Celaj S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation 2005;111:58–62PubMedCrossRefGoogle Scholar
  28. 28.
    Mabuchi N, Tsutamoto T, Wada A, et al. Relationship between interleukin-6 production in the lungs and pulmonary vascular resistance in patients with congestive heart failure. Chest 2002;121:1195–202PubMedCrossRefGoogle Scholar
  29. 29.
    TØnnessen T, Florholmen G, Henriksen UL, Christensen G. Cardiopulmonary alterations in mRNA expression for interleukin-1beta, the interleukin-6 superfamily and CXC-chemokines during development of postischaemic heart failure in the rat. Clin Physiol Funct Imaging 2003;23:263–8PubMedCrossRefGoogle Scholar
  30. 30.
    Gaertner R, Lepailleur-Enouf D, Gonzalez W, et al. Pulmonary endothelium as a site of synthesis and storage of interleukin-6 in experimental congestive heart failure. Eur J Heart Fail 2003;5:435–42PubMedCrossRefGoogle Scholar
  31. 31.
    Aker S, Belosjorow S, Konietzka I, et al. Serum but not myocardial TNF-alpha concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 2003;285:R463–9PubMedGoogle Scholar
  32. 32.
    Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol 2004;286:H2264–71PubMedCrossRefGoogle Scholar
  33. 33.
    Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am J Physiol Regul Integr Comp Physiol 2003;284:R328–35PubMedGoogle Scholar
  34. 34.
    Zittermann A, Schleithoff SS, Koerfer R. Markers of bone metabolism in congestive heart failure. Clin Chim Acta 2006;366:27–36PubMedCrossRefGoogle Scholar
  35. 35.
    Shioi T, Matsumori A, Kihara Y, et al. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81:664–71PubMedGoogle Scholar
  36. 36.
    Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 1998;18:894–901PubMedGoogle Scholar
  37. 37.
    Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40:426–32PubMedCrossRefGoogle Scholar
  38. 38.
    Li N, Karin M. Is NF-KB the sensor of oxidative stress? FASEB J. 1999;13:1137–43PubMedGoogle Scholar
  39. 39.
    Janabi M, Yamashita S, Hirano K, et al. Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol 2000;20:1953–60PubMedGoogle Scholar
  40. 40.
    Knuefermann P, Vallejo J, Mann DL. The role of innate immune responses in the heart in health and disease. Trends Cardiovasc Med 2004;14:1–147PubMedCrossRefGoogle Scholar
  41. 41.
    Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 2005Google Scholar
  42. 42.
    Eriksson U, Ricci R, Hunziker L, et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 2003;9:1484–90PubMedCrossRefGoogle Scholar
  43. 43.
    Dunzendorfer S, Lee HK, Soldau K, Tobias PS. Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS responses. Faseb J 2004;18:1117–9PubMedGoogle Scholar
  44. 44.
    Calabrese F, Thiene G. Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res 2003;60:11–25PubMedCrossRefGoogle Scholar
  45. 45.
    Becker AE, de Boer OJ, van Der Wal AC. The role of inflammation and infection in coronary artery disease. Annu Rev Med 2001;52:289–97PubMedCrossRefGoogle Scholar
  46. 46.
    Penninger JM, Bachmaier K. Review of microbial infections and the immune response to cardiac antigens. J Infect Dis 2000;181 Suppl 3:S498–504PubMedCrossRefGoogle Scholar
  47. 47.
    Niebauer J, Volk H-D, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999;353:1838–42PubMedCrossRefGoogle Scholar
  48. 48.
    Conraads VM, Jorens PG, De Clerck LS, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail 2004;6:483–91PubMedCrossRefGoogle Scholar
  49. 49.
    Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 2003;16:379–414PubMedCrossRefGoogle Scholar
  50. 50.
    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-Adrenergic Blockade in Developing Heart Failure: Effects on Myocardial Inflammatory Cytokines, Nitric Oxide, and Remodeling. Circulation 2000;101:2103–1209PubMedGoogle Scholar
  51. 51.
    Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL. Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2002;39:842–50PubMedCrossRefGoogle Scholar
  52. 52.
    Brasier AR, Recinos A, 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22:1257–66PubMedCrossRefGoogle Scholar
  53. 53.
    Joffe HV, Adler GK. Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation. Heart Fail Rev 2005;10:31–7PubMedCrossRefGoogle Scholar
  54. 54.
    Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT. Aldosteronism and a proinflammatory vascular phenotype: role of Mg2+, Ca2+, and H2O2 in peripheral blood mononuclear cells. Circulation 2005;111:51–7PubMedCrossRefGoogle Scholar
  55. 55.
    Ahokas RA, Warrington KJ, Gerling IC, et al. Aldosteronism and peripheral blood mononuclear cell activation: a neuroendocrine-immune interface. Circ Res 2003;93:e124–35PubMedCrossRefGoogle Scholar
  56. 56.
    Hansen PR, Rieneck K, Bendtzen K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells. Immunol Lett 2004;91:87–91PubMedCrossRefGoogle Scholar
  57. 57.
    Sonder SU, Mikkelsen M, Rieneck K, Hedegaard CJ, Bendtzen K. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br J Pharmacol 2006Google Scholar
  58. 58.
    Werner C, Werdan K, Ponicke K, Brodde OE. Impaired beta-adrenergic control of immune function in patients with chronic heart failure: reversal by beta1-blocker treatment. Basic Res Cardiol 2001;96:290–8PubMedCrossRefGoogle Scholar
  59. 59.
    Mann DL. Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future. Circ Res 2002;91:988–98PubMedCrossRefGoogle Scholar
  60. 60.
    Aukrust P, Gullestad L, Ueland T, Damås JK, Yndestad A. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 2005;37:74–85PubMedCrossRefGoogle Scholar
  61. 61.
    Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 2003;65:81–101PubMedCrossRefGoogle Scholar
  62. 62.
    Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha. Circulation 1999;100:1983–91PubMedGoogle Scholar
  63. 63.
    Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS. TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 2003;171:1526–33PubMedGoogle Scholar
  64. 64.
    Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Cardiol 2002;85:51–66PubMedCrossRefGoogle Scholar
  65. 65.
    Sharma R, Anker SD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol 2002;85:161–71PubMedCrossRefGoogle Scholar
  66. 66.
    Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 1997;185:171–5PubMedCrossRefGoogle Scholar
  67. 67.
    Okonko DO, Anker SD. Anemia in chronic heart failure: pathogenetic mechanisms. J Card Fail 2004;10:S5–9PubMedCrossRefGoogle Scholar
  68. 68.
    Iversen PO, Woldbaek PR, TØnnessen T, Christensen G. Decreased hematopoiesis in bone marrow of mice with congestive heart failure. Am J Physiol Regul Integr Comp Physiol 2002;282:R166–72PubMedGoogle Scholar
  69. 69.
    Ganz T. Hepcidin in iron metabolism. Curr Opin Hematol 2004;11:251–4PubMedCrossRefGoogle Scholar
  70. 70.
    Sano M, Fukuda K, Kodama H, et al. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 2000;275:29717–23PubMedCrossRefGoogle Scholar
  71. 71.
    Gullestad L, Aukrust P, Ueland T, et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999;34:2061–7PubMedCrossRefGoogle Scholar
  72. 72.
    Ueland T, Jemtland R, Godang K, et al. Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction. J Am Coll Cardiol 2004;44:1970–6PubMedCrossRefGoogle Scholar
  73. 73.
    Gerling IC, Sun Y, Ahokas RA, et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 2003;285:H813–21PubMedGoogle Scholar
  74. 74.
    Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 2002;161:1773–81PubMedGoogle Scholar
  75. 75.
    Bendtzen K, Hansen PR, Rieneck K. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-alpha and interferon-gamma, and has potential in the treatment of arthritis. Clin Exp Immunol 2003;134:151–8PubMedCrossRefGoogle Scholar
  76. 76.
    Gullestad L, Ueland T, Brunsvig A, et al. Effect of metoprolol on cytokine levels in chronic heart failure—A substudy in the Metoprolol Controlled-Release Randomised Intervention Trial in Heart Failure (MERIT-HF). Am Heart J 2001;141:418–21PubMedCrossRefGoogle Scholar
  77. 77.
    Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 1999;99:3224–6PubMedGoogle Scholar
  78. 78.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-alpha, in Patients With Moderate-to-Severe Heart Failure: Results of the Anti-TNF Therapy Against Congestive Heart failure (ATTACH) Trial. Circulation 2003;107:3133–40PubMedCrossRefGoogle Scholar
  79. 79.
    Mann DL, McMurray JJV, Packer M, et al. Targeted Anticytokine Therapy in Patients With Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109:1594–602PubMedCrossRefGoogle Scholar
  80. 80.
    Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 2005;115:1119–28; quiz 29PubMedCrossRefGoogle Scholar
  81. 81.
    Gorelik O, Almoznino-Sarafian D, Feder I, et al. Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology 2003;99:177–81PubMedCrossRefGoogle Scholar
  82. 82.
    Cailleret M, Amadou A, Andrieu-Abadie N, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation 2004;109:406–11PubMedCrossRefGoogle Scholar
  83. 83.
    Lopez Farre A, Casado S. Heart failure, redox alterations, and endothelial dysfunction. Hypertension 2001;38:1400–5PubMedGoogle Scholar
  84. 84.
    Aukrust P, Berge RK, Ueland T, et al. Interaction between chemokines and oxidative stress: possible pathogenic role in acute coronary syndromes. J Am Coll Cardiol 2001;37:485–91PubMedCrossRefGoogle Scholar
  85. 85.
    Green JM. The B7/CD28/CTLA4 T-Cell Activation Pathway. Implications for Inflammatory Lung Disease. Am. J. Respir. Cell Mol. Biol. 2000;22:261–4PubMedGoogle Scholar
  86. 86.
    Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001;19:225–52PubMedCrossRefGoogle Scholar
  87. 87.
    Kremer JM, Westhovens R, Leon M, et al. Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4 Ig. N Engl J Med 2003;349:1907–15PubMedCrossRefGoogle Scholar
  88. 88.
    Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-Monocyte Chemoattractant Protein-1 Gene Therapy Attenuates Left Ventricular Remodeling and Failure After Experimental Myocardial Infarction. Circulation 2003;108:2134–40PubMedCrossRefGoogle Scholar
  89. 89.
    Nishio R, Matsumori A, Shioi T, Ishida H, Sasayama S. Treatment of experimental viral myocarditis with interleukin-10. Circulation 1999;100:1102–8PubMedGoogle Scholar
  90. 90.
    Suzuki K, Murtuza B, Smolenski RT, et al. Overexpression of Interleukin-1 Receptor Antagonist Provides Cardioprotection Against Ischemia-Reperfusion Injury Associated With Reduction in Apoptosis. Circulation 2001;104:308I–13Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Arne Yndestad
    • 1
  • Jan Kristian Damås
    • 1
  • Erik Øie
    • 2
  • Thor Ueland
    • 1
    • 3
  • Lars Gullestad
    • 2
  • Pål Aukrust
    • 1
    • 4
  1. 1.Research Institute for Internal Medicine, Rikshospitalet University HospitalUniversity of OsloNorway
  2. 2.Department of Cardiology, Rikshospitalet University HospitalUniversity of OsloNorway
  3. 3.Section of Endocrinology, Rikshospitalet University HospitalUniversity of OsloNorway
  4. 4.Section of Clinical Immunology and Infectious Diseases, Rikshospitalet University HospitalUniversity of OsloNorway

Personalised recommendations