Advertisement

Heart Failure Reviews

, Volume 10, Issue 3, pp 249–257 | Cite as

Functional Consequences of Sarcomeric Protein Abnormalities in Failing Myocardium

  • Martin M. LeWinter
Article

Abstract

Sarcomeric protein abnormalities have been recognized for many years in heart failure due to dilated cardiomyopathy (DCM). In contrast, virtually nothing is known about myofilament abnormalities in heart failure occurring in association with diastolic dysfunction. With the exception of sarcomeric protein mutations that cause DCM, the most important mechanism of myofilament dysfunction in DCM is probably altered post-translational modification, in particular the phosphorylation state of troponins I and T and possibly myosin light chain. Other modifications, including oxidation and glycation, may also play a role. Myosin heavy chain isoform switching occurs in human heart failure, but its functional significance is uncertain. Myofilament abnormalities contribute significantly to myocardial dysfunction in DCM, although their relative importance compared with abnormal calcium handling is debated. One consistent functional abnormality in DCM is increased myofilament calcium sensitivity of tension generation, which contributes to slowed or incomplete relaxation. More recently, decreases in the optimal frequency of myofilament work and power generation have been recognized. These changes may contribute to depression of the force-frequency relation in DCM. Altered mechanoenergetics constitute one of the most important manifestations of myofilament dysfunction in heart failure. DCM and hemodynamic overload are associated with more economical and efficient energy utilization by the contractile machinery, which may be protective of the myocardium. This change is strongly associated with depressed myofibrillar ATPase activity. We speculate that the effectiveness of mechanical therapies such as resynchronization may at least in part be related to improved mechanical function without loss of this mechanoenergetic advantage.

Key Words

sarcomeric proteins myofilament myosin troponin I troponin T mechanoenergetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpert NR, Gordon MS. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 1962;202:940–946.PubMedGoogle Scholar
  2. 2.
    Pagani ED, Alouisi AA, Grant AM, Older TM, Dziuban SW Jr, Allen PD. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissue from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral insufficiency. Circ Res 1988;63:380–385.PubMedGoogle Scholar
  3. 3.
    Anderson PAW, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in the normal and failing human left ventricle: A correlation with myofibrillar ATPase activity. Basic Res Cardiol 1992;87(Suppl 1):117–127.PubMedGoogle Scholar
  4. 4.
    Nguyen TT, Hayes E, Mulieri LA, Leavitt BJ, ter Keurs HE, Alpert NR, Warshaw DM. Maximal actomyosin ATPase activity and in vitro myosin motility are unaltered in human mitral regurgitation heart failure. Circ Res 1996;79:222–226.PubMedGoogle Scholar
  5. 5.
    Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 2000;86(4):386–390.PubMedGoogle Scholar
  6. 6.
    VanBuren P, Alix S, LeWinter MM, Alpert NR. Influence of myosin isoform variation on velocity and force development of reconstituted and native thin and thick filaments. J Mol Cell Cardiol 2003;35:91–7.PubMedGoogle Scholar
  7. 7.
    McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 1999;84:9–20.PubMedGoogle Scholar
  8. 8.
    Colantonio DA, Van Eyk JE, Przyklenk K. Stunned peri–infarct canine myocardium is characterized by degradation of troponin T, not troponin I. Cardiovasc Res 2004;63:217–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Z, Higashiyama A, Watkins M, Yaku H, Bell S, Fabian J, Maughan D, LeWinter MM. Altered expression of troponin T isoforms in mild left ventricular hypertrophy in the rabbit. J Mol Cell Cardiol 1997;29:2345—2354.PubMedGoogle Scholar
  10. 10.
    Anderson PAW, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans: A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991;69:1226–1233.PubMedGoogle Scholar
  11. 11.
    VanBuren P, LeWinter MM, Begin K, Alpert NA. Cardiac troponin T isoforms demonstrate similar effects on mechanical performance in a regulated contractile system. Am J Physiol 2002 282:H1665–1671.Google Scholar
  12. 12.
    Auckland LM, Lambert SJ, Cummins P. Cardiac myosin light and heavy chain isotypes in tetralogy of Fallot. Cardiovasc Res 1986;20:828–836.PubMedGoogle Scholar
  13. 13.
    Haase D, Lehmann MH, Korner MM, Korfer R, Sigusch HH, Figulla HR. Identification and validation of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur J Heart Fail 2002;4:23–31.PubMedGoogle Scholar
  14. 14.
    Goldspink PH, Montgomery DE, Walker LA, Urboniene D, McKinney RD, Geenen DL, Solaro RJ, Buttrick PM. Protein kinase C epsilon overexpression alters myofilament properties and composition during the progression of heart failure. Circ Res 2004;95:424–432.CrossRefPubMedGoogle Scholar
  15. 15.
    Alpert NR, Mulieri LA. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in rabbit. Circ Res 1982;50:491—500.Google Scholar
  16. 16.
    Kameyama T, Chen Z, Belll SP, VanBuren P, Maughan D, LeWinter MM. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt–sensitive rats. Circulation 1998;98:2919–2929.PubMedGoogle Scholar
  17. 17.
    VanBuren P, Harris DE, Alpert NR, Warshaw DM. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res 1995;77:439–444.PubMedGoogle Scholar
  18. 18.
    Goto Y, Slinker BK, LeWinter MM. Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart. Circ Res 1990;66:999–1011.PubMedGoogle Scholar
  19. 19.
    Reiser PJ, Portman MA, Ning X-H, Moravec CS. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol 2001;H1814–H1820.Google Scholar
  20. 20.
    Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 2004;110:155–162.CrossRefPubMedGoogle Scholar
  21. 21.
    Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart. Circulation 1997;96:1495–1500.PubMedGoogle Scholar
  22. 22.
    Zakhary DR, Moravec CS, Stewart RW, Bond M. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation 1999;99:505–510.PubMedGoogle Scholar
  23. 23.
    Sumandea MP, Burkart EM, Kobayashi T, De Tombe PP, Solaro RJ. Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann N Y Acad Sci 2004;1015:39–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Tong CW, Gaffin RD, Zawieja DC, Muthuchamy M. Roles of phosphorylation of myosin binding protein-C and troponin I in mouse cardiac muscle twitch dynamics. J Physiol 2004;558:927–941.CrossRefPubMedGoogle Scholar
  25. 25.
    Layland J, Solaro RJ, Shah AM. Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 2005;66:12–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Haworth RS, Cuello F, Herron TJ, Franzen G, Kentish JC, Gautel M, Avkiran M. Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circ Res 2004;95:1091–1099.CrossRefPubMedGoogle Scholar
  27. 27.
    Fukuda N, Wu Y, Nair P, Granzier HL. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 2005;125:257–271.CrossRefPubMedGoogle Scholar
  28. 28.
    Sanbe A, Fewell JG, Gulick J, Osinska H, Lorenz J, Hall DG, Murray LA, Kimball TR, Witt SA, Robbins J. Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. J Biol Chem 1999;274:21085–21094.CrossRefPubMedGoogle Scholar
  29. 29.
    Boknik P, Khorchidi S, Bodor GS, Huke S, Knapp J, Linck B, Luss H, Muller FU, Schmitz W, Neumann J. Role of protein phosphatases in regulation of cardiac inotropy and relaxation. Am J Physiol 2001;280:H786–794.Google Scholar
  30. 30.
    Gergs U, Boknik P, Buchwalow I, Fabritz L, Matus M, Justus I, Hanske G, Schmitz W, Neumann J. Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function. J Biol Chem 2004;279:40827–40834.CrossRefPubMedGoogle Scholar
  31. 31.
    Noland TA Jr, Guo X, Raynor RL, Jideama NM, Averyhart-Fullard V, Solaro RJ, Kuo JF. Cardiac troponin I mutants, Phosphorylation by protein kinases C and A And regulation of Ca(2+)-stimulated MgATPase of reconstituted actomyosin S-1. J Biol Chem 1995;270:25445–25454.PubMedGoogle Scholar
  32. 32.
    Noland TA Jr, Raynor RL, Jideama NM, Guo X, Kazanietz MG, Blumberg PM, Solaro RJ, Kuo JF. Differential regulation of cardiac actomyosin S-1 MgATPase by protein kinase C isozyme-specific phosphorylation of specific sites in cardiac troponin I and its phosphorylation site mutants. Biochem 1996;35:14923–14931.Google Scholar
  33. 33.
    Jideama NM, Noland TA Jr, Raynor RL, Blobe GC, Fabbro D, Kazanietz MG, Blumberg PM, Hannun YA, Kuo JF. Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins. J Biol Chem 1996;271:23277–23283.PubMedGoogle Scholar
  34. 34.
    Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: Role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest 1996;98:167–176.PubMedGoogle Scholar
  35. 35.
    Zakhary DR, Moravec CS, Stewart RW, Bond M. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation 1999;99:505–510.PubMedGoogle Scholar
  36. 36.
    van der Velden J, de Jong JW, Owen VJ, Burton PB, Stienen GJ. Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res 2000;46:487–495.PubMedGoogle Scholar
  37. 37.
    VanBuren P, Hunlich M, Begin K, LeWinter MM. Effects of protein kinase A activation on thin filament modulation of in vitro motility and force. J Mol Cell Cardiol 2005;38:119–125.PubMedGoogle Scholar
  38. 38.
    Simpson PC. β -Protein kinase C and hypertrophic signaling in human heart failure. Circulation 1999;99:334–337.PubMedGoogle Scholar
  39. 39.
    Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ. Increased protein kinase C activity and expression in the failing Human heart. Circulation 1999;99:384–391.PubMedGoogle Scholar
  40. 40.
    Noguchi T, Hunlich M, Begin K, LeWinter MM, VanBuren P. Altered thin Filament activation of in vitro motility and force in failing human myocardium. Circulation 2004;110:982–987.CrossRefPubMedGoogle Scholar
  41. 41.
    Noguchi T, Chen Z, LeWinter MM. Activation of PKC decreases myocardial O2 consumption and increases contractile efficiency in rats. Am J Physiol 2001;281:H2191–H2197.Google Scholar
  42. 42.
    Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM. Expression of protein kinase Cβ in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 1997;100:2189–2195.PubMedGoogle Scholar
  43. 43.
    Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL. Targeted overexpression of protein kinase Cβ 2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 1997;94:9320–9325.CrossRefPubMedGoogle Scholar
  44. 44.
    Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA. Transgenic overexpression of constitutively active protein kinase C ε causes concentric cardiac hypertrophy. Circ Res 2000;86:1218–1225.PubMedGoogle Scholar
  45. 45.
    Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN. Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am J Physiol 2003;285:H2373–H2381.Google Scholar
  46. 46.
    Duncan JG, Ravi R, Stull LB, Murphy AM. Chronic xanthine oxidase inhibition Prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am J Physiol 2005 (E pub ahead of print).Google Scholar
  47. 47.
    Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers: A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens 2004;17:23S–30S.PubMedGoogle Scholar
  48. 48.
    Herron TJ, Korte FS, McDonald KS. Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ Res 2001;89:1184–1190.PubMedGoogle Scholar
  49. 49.
    McCurdy D, Palmer BM, Maughan DW, LeWinter MM. Myocardial cross-bridge kinetics in transition to failure in Dahl salt-sensitive rats. Am J Physiol 2001;281:H1390–H1396.Google Scholar
  50. 50.
    VanBuren P, Begin KJ, Alix SL, Palmiter KA, LeWinter MM. Altered myocardial thin filament composition and function in the failing Dahl salt sensitive rat heart. Circulation 2003;107:630–635.PubMedGoogle Scholar
  51. 51.
    Palmiter KA, Tyska MJ, Haeberle JR, Alpert NR, Fananapazir L, Warshaw DM. R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil 2000;21:609–620.CrossRefPubMedGoogle Scholar
  52. 52.
    Kinugawa S, Tsutsui H, Satoh S, Takahashi M, Ide T, IgarashiSaito K, Arimura K, Egashira K, Takeshita A. Role of Ca2+ availability to mnyofilaments and their sensitivity to Ca2+ in myocyte contractile dysfunction in heart failure. Cardiovasc Res 1999;44:398–406.CrossRefPubMedGoogle Scholar
  53. 53.
    Perez NG, Hashimoto K, McCune S, Altschuld RA, Marban E. Origin of contractile dysfunction in heart failure: Calcium cycling versus myofilaments. Circulation 1999;99:1077–1083.PubMedGoogle Scholar
  54. 54.
    Yoneda T, Kihara Y, Ohkusa T, Iwanaga Y, Ingaki K, Takeuchi Y, Hayashida W, Ueyama T, Hisamatsu Y, Fujita M, Hatac S, Matsuzaki M, Sasayama S. Calcium handling and sarcoplasmic-reticular protein functions during heart- failure transition in ventricular myocardium from rats with hypertension. Life Sci 2001;70:143–157.CrossRefPubMedGoogle Scholar
  55. 55.
    Brizius K, Savvidou-Zaroti P, Mehlhorn U, Bloch W, Kranias EG, Schwinger RH. Increased Ca2+-sensitivity of myofibrillar tension in heart failure and its Functional implication. Basic Res Cardiol 2002;97(Suppl 1):I111–117.Google Scholar
  56. 56.
    Miller DJ, MacFarlane NG, Wilson G. Altered oscillatory work by ventricular myofilaments from a rabbit coronary artery ligation model of heart failure. Cardiovasc Res 2004;61:94–104.CrossRefPubMedGoogle Scholar
  57. 57.
    Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR. Altered myocardial force-frequency relation in human heart failure. Circulation 1992;85:1743–1750.PubMedGoogle Scholar
  58. 58.
    Ross J Jr, Miura T, Kambayashi M, Eising GP, Ryu KH. Adrenergic control of the force-frequency relation. Circulation 1995;92:2327–2332.PubMedGoogle Scholar
  59. 59.
    Mulieri LA, Leavitt BJ, Martin BJ, Haeberle JR, Alpert NR. Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 1993;88:2700–2704.PubMedGoogle Scholar
  60. 60.
    Kass DA. Force-frequency relation in patients with left ventricular hypertrophy and failure. Basic Res Cardiol 1998;93 (Suppl 1):108–116.PubMedGoogle Scholar
  61. 61.
    Alpert NR, Leavitt BJ, Ittleman FP, Hasenfuss G, Pieske B, Mulieri LA. A mechanistic analysis of the force-frequency relation in non-failing and progressively failing human myocardium. Basic Res Cardiol 1998;93(Suppl 1):23–32.PubMedGoogle Scholar
  62. 62.
    Mulieri LA, Barnes W, Leavitt BJ, Ittleman FP, LeWinter MM, Alpert NR, Maughan DW. Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res 2002;90:66–72.CrossRefPubMedGoogle Scholar
  63. 63.
    Fukagawa NK, Palmer BM, Barnes WD, Leavitt BJ, Ittleman FY, LeWinter MM, Mulieri LA, Maughan DW. Influence of sex and diabetes mellitus on acto- myosin crossbridge kinetics of human cardiac myofilaments. J Mol Cell Cardiol (in press).Google Scholar
  64. 64.
    Palmiter KA, Tyska MJ, Dupuis DE, Alpert NR, Warshaw DM. Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol 1999;519:669–678.CrossRefPubMedGoogle Scholar
  65. 65.
    Holubarsch C, Goulette RP, Litten RZ, Martin BJ, Mulieri LA, Alpert NA. The economy of isometric force development, myosin isoenzyme pattern, and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 1985;56:78–86.PubMedGoogle Scholar
  66. 66.
    Palmer BM, Noguchi T, Wang Y, Heim JR, Alpert NR, Burgon PG, Seidman CE, Seidman JG, Maughan DW, LeWinter MM. The effect of cardiac myosin binding protein C on mechanoenergetics in mouse myocardium. Circ Res 2004;94:1615–1622.PubMedGoogle Scholar
  67. 67.
    Zile MR, Koide M, Sato H, Ishiguro Y, Conrad CH, Buckley JM, Morgan JP, Cooper G. 4th, Role of microtubules in the contractile dysfunction of hypertrophied myocardium. J Am Coll Cardiol 1999;33:250–260.CrossRefPubMedGoogle Scholar
  68. 68.
    Hassenfuss G, Mulieri LA, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, Alpert NA. Energetics of isometric force development in control and volume-overload human myocardium: Comparisons with animal species. Circ Res 1991;68:836–846.Google Scholar
  69. 69.
    Suga H. Ventricular energetics. Physiol Rev 1990;70:247–277.PubMedGoogle Scholar
  70. 70.
    Noguchi T, Chen Z, Bell SP, LeWinter MM. Endothelin receptor blockade has an oxygen-saving effect in Dahl salt sensitive rats with chronic heart failure. Am J Physiol 2003;285:H1428–1434.Google Scholar
  71. 71.
    Wolff MR, de Tombe PP, Harasawa Y, Burkhoff D, Bier S, Hunter WC, Gerstenblith G, Kass DA. Alterations in left ventricular mechanics, energetics and contractile reserve in experimental heart failure. Circ Res 1992;70:526–529.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Cardiology Unit, Dept. of Medicine, College of MedicineUniversity of VermontBurlington
  2. 2.Cardiology UnitFletcher Allen Health CareBurlington

Personalised recommendations