Advertisement

High Temperature

, 44:908 | Cite as

A possible mechanism of triggering a vapor explosion

  • V. V. Glazkov
  • V. S. Grigor’ev
  • V. G. Zhilin
  • Yu. A. Zeigarnik
  • Yu. P. Ivochkin
  • K. G. Kubrikov
  • N. V. Medvetskaya
  • A. A. Oksman
  • O. A. Sinkevich
Heat and Mass Transfer and Physical Gasdynamics

Abstract

Relations are derived which enable one to assess the size of fragments of a liquid-metal droplet after its fragmentation formed in the case of instantaneous contact between a hot metal surface and a coolant. The obtained experimental data demonstrate that the amplitude of pressure pulses generated during vapor film collapse (second boiling crisis) is several times lower than the values required for triggering a spontaneous vapor explosion. The assumption is validated according to which progress in studying the process of triggering a spontaneous vapor explosion is associated primarily with advances in understanding the mechanism of fragmentation of individual droplet.

Keywords

Pressure Pulse Vapor Film Intense Vaporization Wire Explosion Cold Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Executive Summary of the CNSI Specialist Meeting on Fuel-Coolant Interactions. NUREG/CP-0127, Santa-Barbara, 1993.Google Scholar
  2. 2.
    Fletcher, D.F., Nucl. Eng. Des., 1995, vol. 155, p. 27.CrossRefGoogle Scholar
  3. 3.
    Berthoud, G., Ann. Rev. Fluid Mech., 2000, vol. 32, p. 573.CrossRefADSGoogle Scholar
  4. 4.
    Corradini, M., Nucl. Safety, 1991, vol. 32, p. 337.Google Scholar
  5. 5.
    Inoue, A. and Bankoff, S.G., J. Heat Transfer, 1981, vol. 103, p. 459.CrossRefGoogle Scholar
  6. 6.
    Inoue, A., Aoki, S., Aritomi, M. et al., Study of Transient Heat Transfer of Film Boiling due to Arrival of a Pressure Shock, Proc. 7 th Int. Heat Transfer Conf., Munich, 1982, Paper FB 39.Google Scholar
  7. 7.
    Grigor’ev, V.S., Zhilin, V.G., Zeigarnik, Yu.A. et al., Teplofiz. Vys. Temp., 2005, vol. 43, no. 1, p. 100 (High Temp. (Engl. transl.), vol. 43, no. 1, p. 103).Google Scholar
  8. 8.
    Zhilin, V.G., Ivochkin, Yu.P., Oksman, A.A. et al., Teplofiz. Vys. Temp., 1996, vol. 34, no. 5, p. 811 (High Temp. (Engl. transl.), vol. 34, no. 5, p. 810).Google Scholar
  9. 9.
    Zeigarnik, Yu.A., Ivochkin, Yu.P., and Korol’, E.Z., Teplofiz. Vys. Temp., 2004, vol. 42, no. 3, p. 491 (High Temp. (Engl. transl.), vol. 42, no. 3, p. 497).Google Scholar
  10. 10.
    Ivanov, M.A., Prikl. Mekh. Tekh. Fiz., 1981, no. 1, p. 140.Google Scholar
  11. 11.
    Dullforce, T.A., Buchanan, D.J., and Peckover, R.S., J. Phys. D., 1976, vol. 9, p. 1295.CrossRefADSGoogle Scholar

Copyright information

© Russian Academy of Sciences and Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Glazkov
    • 1
    • 2
  • V. S. Grigor’ev
    • 1
    • 2
  • V. G. Zhilin
    • 1
    • 2
  • Yu. A. Zeigarnik
    • 1
    • 2
  • Yu. P. Ivochkin
    • 1
    • 2
  • K. G. Kubrikov
    • 1
    • 2
  • N. V. Medvetskaya
    • 1
    • 2
  • A. A. Oksman
    • 1
    • 2
  • O. A. Sinkevich
    • 1
    • 2
  1. 1.Joint Institute of High TemperaturesRussian Academy of Sciences (IVTAN)MoscowRussia
  2. 2.Moscow Institute of Power Engineering (Technical University)MoscowRussia

Personalised recommendations