Advertisement

High Temperature

, Volume 44, Issue 6, pp 795–803 | Cite as

The parameters of nonequilibrium microwave discharge in nitrogen in a tube in a rectangular waveguide

  • Yu. A. Lebedev
  • V. A. Shakhatov
Plasma Investigations

Abstract

Computer codes are developed for the processing of emission spectra of nonequilibrium plasma in nitrogen for the purpose of obtaining information about the translational T g and rotational T rot temperatures, the populations of vibrational levels in the ground electron and electron-excited states, the electron energy distribution function, the electron concentration N e , and the electric field intensity E. The computer codes are used to determine the parameters of microwave-discharge plasma in nitrogen in discharge systems of two types, namely, in a discharge tube (with a radius of 1 cm), which crosses a rectangular waveguide (plasmatron on the H 10 wavelength, at a pressure of 1.7 torr and absorbed power density of 1.5 W/cm3), and in a discharge section of similar structure on the basis of prismatic resonator (at a pressure of 1.0 torr and absorbed power density of 0.4 W/cm3). The mechanisms of population of the N2(C 3Πu) state are treated.

Keywords

Vibrational Level Electric Field Intensity Ground Electron State Discharge Tube Nitrogen Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microwave Discharges: Fundamentals and Applications. Proceedings of IV International Workshop, Zvenigorod, Lebedev, Yu.A., Ed., Moscow: Yanus-K, 2001.Google Scholar
  2. 2.
    Diagnostika nizkotemperaturnoi plazmy (The Diagnostics of Low-Temperature Plasma), Zhukov, M.F. and Ovsyannikov, A.A., Eds., Novosibirsk: Nauka, 1994, vol. 9.Google Scholar
  3. 3.
    Lebedev, Yu.A. and Shakhatov, V.A., Fiz. Plazmy, 2006, vol. 32, no. 1, p. 58.Google Scholar
  4. 4.
    Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Zh. Tekh. Fiz., 1976, vol. 46, no. 7, p. 1459.Google Scholar
  5. 5.
    Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Metody kontaktnoi diagnostiki v neravnovesnoi plazmokhimii (Contact Diagnostic Techniques in Nonequilibrium Plasma Chemistry), Moscow: Nauka, 1981.Google Scholar
  6. 6.
    Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Fiz. Plazmy, 1976, vol. 2, no. 5, p. 871.Google Scholar
  7. 7.
    Lebedev, Yu.A., Plasma Sources Sci. Technol., 1995, vol. 4, no. 3, p. 475.CrossRefADSGoogle Scholar
  8. 8.
    Capitelli, M., Ferreira, C.M., Gordiets, B.F., and Osipov, A.I., Plasma Kinetics in Atmospheric Gases, Berlin: Springer, 2000.Google Scholar
  9. 9.
    Gubanov, A.M., Zh. Prikl. Spektrosk., 1970, vol. 12, issue 5, p. 794.Google Scholar
  10. 10.
    Gubanov, A.M., Opt. Spektrosk., 1971, vol. 30, issue 2, p. 211.Google Scholar
  11. 11.
    Phillips, D.M., J. Phys. D, 1975, vol. 8, p. 507.CrossRefGoogle Scholar
  12. 12.
    Chelouah, A., Marode, E., Hartmann, G. et al., J. Phys. D, 1994, vol. 27, p. 940.CrossRefADSGoogle Scholar
  13. 13.
    Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M. et al., Fizicheskie velichiny. Spravochnik (Physical Quantities: A Reference Book), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  14. 14.
    Mulliken, R. and Christy, A., Phys. Rev., 1931, vol. 38, p. 87.CrossRefADSMATHGoogle Scholar
  15. 15.
    Budo, A., Z. Phys., 1935, vol. 96, p. 219.CrossRefADSGoogle Scholar
  16. 16.
    Pearse, R. W. B. and Gaydon, A. G., The Identification of Molecular Spectra, London: Chapman and Hall, 1941. Translated under the title Otozhdestvlenie molekulyarnykh spektrov, Moscow: Inostrannaya Literatura, 1949.Google Scholar
  17. 17.
    Herzberg, G., Molecular Spectra and Molecular Structure, New York: Van Nostrand, 1939, vol. 1. Translated under the title Spektry i stroenie dvukhatomnykh molekul, Moscow: Inostrannaya Literatura, 1949.Google Scholar
  18. 18.
    Kovacs, I., Astrophys. J., 1966, vol. 145, p. 634.CrossRefADSGoogle Scholar
  19. 19.
    Kovacs, I., Rotational Structure in the Spectra of Diatomic Molecules, Budapest: Akademiai Kiado, 1969.Google Scholar
  20. 20.
    Bouchoux, A.M., Bacis, R., Goure, J.P. et al., J. Quant. Spectrosc. Radiat. Transfer, 1976, vol. 16, p. 451.CrossRefADSGoogle Scholar
  21. 21.
    Whitting, E.E., Paterson, J.A., Kovacs, I. et al., J. Mol. Spectrosc., 1973, vol. 47, p. 84.CrossRefADSGoogle Scholar
  22. 22.
    Colbourn, E.A. and Douglas, A.E., J. Mol. Spectrosc., 1977, vol. 65, p. 332.CrossRefADSGoogle Scholar
  23. 23.
    Lofthus, A. and Krupenie, P.H., J. Phys. Chem. Ref. data, 1977, vol. 6, no. 1, p. 307.Google Scholar
  24. 24.
    Allison, J., Kondow, T., and Zare, R.N., Chem. Phys. Lett., 1979, vol. 64, p. 202.CrossRefADSGoogle Scholar
  25. 25.
    Kuznetsova, L.A., Kuz’menko, N.E., Kuzyakov, Yu.Ya. et al., Veroyatnosti opticheskikh perekhodov dvukhatomnykh molekul (Probabilities of Optical Transitions of Diatomic Molecules), Khokhlov, R.V., Ed., Moscow: Nauka-Fizmatlit, 1980.Google Scholar
  26. 26.
    Elektronno-vozbuzhdennye molekuly v neravnovesnoi plazme (Electron-Excited Molecules in Nonequilibrium Plasma), Tr. Fiz. Inst. Akad. Nauk SSSR, 1985, vol. 157.Google Scholar
  27. 27.
    Laher, R.R. and Gilmore, F.R., J. Phys. Chem. Ref. Data, 1991, vol. 20, no. 4, p. 685.ADSCrossRefGoogle Scholar
  28. 28.
    De Benedictis, S. and Cramarossa, F., Chem. Phys., 1987, vol. 112, p. 363.CrossRefGoogle Scholar
  29. 29.
    Massabieaux, B., Plain, A., Ricard, A. et al., J. Phys. B, 1983, vol. 16, p. 1863.CrossRefADSGoogle Scholar

Copyright information

© Russian Academy of Sciences and Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. A. Lebedev
    • 1
  • V. A. Shakhatov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations