High Temperature

, Volume 44, Issue 1, pp 120–128 | Cite as

Hydrodynamics and heat transfer in pulsating turbulent flow of gas in a heated pipe

  • E. P. Valueva
Heat and Mass Transfer and Physical Gasdynamics


The paper deals with the investigation of the effect produced by the dependence of the physical properties on temperature and flow rate fluctuations on heat transfer and drag under conditions of turbulent pipe flow of gas. The method of finite differences is used to solve numerically a set of equations of motion, continuity, and energy written in a narrow channel approximation. A model of turbulence is used which takes into account the effect of the variability of the properties and of the nonstationarity of flow on turbulent transfer. In the particular case of steady-state flow of gas being heated, the calculation results fit well the available experimental data. It is found that the heat transfer depends on the heating rate more significantly than the friction drag. In the case of pulsating flow, the part of hydraulic drag is estimated which is spent for the variation of longitudinal velocity along the pipe and is due to the thermal acceleration of gas. It is demonstrated that the main features of pulsating flow, which were previously investigated for a liquid of constant properties and for a dropping liquid of variable viscosity, are retained for the gas being heated as well. Comparison is made for the gas and dropping liquid of the effect made by various process parameters such as the Reynolds, Stokes, and Prandtl numbers, the heating rate, and the form of thermal condition on the wall on the period average Nusselt number and coefficient of friction drag.


Heat Transfer Nusselt Number Prandtl Number Channel Approximation Longitudinal Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petukhov, B.S., Genin, L.G., and Kovalev, S.A., Teploobmen v yadernykh energeticheskikh ustanovkakh (Heat Transfer in Nuclear Power Plants), Moscow: Energoatomizdat, 1986.Google Scholar
  2. 2.
    Valueva, E.P., Teplofiz. Vys. Temp., 2005, vol. 43, no. 6, p. 888 (High Temp. (Engl. transl.), vol. 43, no. 6, p. 890).Google Scholar
  3. 3.
    McEligot, D.M., Magee, P.M., and Leppert, G., Teploperedacha, 1965, no. 1, p. 82 (Russ. transl. of Trans. ASME J. Heat Transfer).Google Scholar
  4. 4.
    Valueva, E.P., Teplofiz. Vys. Temp., 1999, vol. 37, no. 5, p. 750 (High Temp. (Engl. transl.), vol. 37, no. 5, p. 720).Google Scholar
  5. 5.
    Popov, V.N. and Valueva, E.P., Heat Transfer and Hydrodynamics under Conditions of Unsteady Turbulent Flow of Liquid in a Round Pipe, in Teplomassoobmen—MMF-92 (Heat and Mass Transfer-MMF-92), Minsk, 1992, vol. 1, part 1, p. 133.Google Scholar
  6. 6.
    Valueva, E.P. and Popov, V.N., Izv. Ross. Akad. Nauk Energ., 1993, no. 5, p. 150.Google Scholar
  7. 7.
    Popov, V.N., Teplofiz. Vys. Temp., 1977, vol. 15, no. 4, p. 795.ADSGoogle Scholar
  8. 8.
    Popov, V.N., Belyaev, V.M., and Valueva, E.P., Teplofiz. Vys. Temp., 1977, vol. 15, no. 6, p. 1220.Google Scholar
  9. 9.
    Kurganov, V.A. and Maslakova, I.V., Teplofiz. Vys. Temp., 2003, vol. 41, no. 6, p. 889 (High Temp. (Engl. transl.), vol. 41, no. 6, p. 790).Google Scholar
  10. 10.
    Kurganov, V.A. and Ankudinov, V.B., Teploenergetika, 1985, no. 6, p. 53.Google Scholar
  11. 11.
    Lel’chuk, V.L. and Dyadyakin, B.V., Heat Transfer from the Wall to a Turbulent Flow of Air within a Pipe and Hydraulic Drag at High Values of Temperature Head, in Voprosy teploobmena (Problems in Heat Transfer), Moscow: Izd. AN SSSR (USSR Acad. Sci.), 1959, p. 123.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. P. Valueva
    • 1
  1. 1.Moscow Institute of Power Engineering (Technical University)MoscowRussia

Personalised recommendations