High Temperature

, Volume 43, Issue 5, pp 653–660 | Cite as

The Heating of Electrons in Magnetic Traps of Low-Pressure Electron-Cyclotron-Resonance Microwave-Frequency Reactors

  • A. B. Petrin
Plasma Investigations


Methods are analyzed of maintaining plasma in low-pressure electron-cyclotron-resonance reactors in which the ionization is caused by fast electrons blocked in traps developed by permanent magnets. The key part played by zones of electron-cyclotron heating of electrons by the electric field of the wave is treated. The mathematical simulation of the electron motion in magnetic traps is used to investigate the effect of the size of magnetic traps on the efficiency of heating, and the principles of designing electron-cyclotron-resonance plasma MW (microwave-frequency) reactors are formulated.


Physical Chemistry Plasma Physics Permanent Magnet Fast Electron Mathematical Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gammino, S. and Ciavola, G., Plasma Sources Sci. Technol., 1996, vol. 5, p. 19.CrossRefADSGoogle Scholar
  2. 2.
    VLSI Electronics Microstructure Science: Plasma Processing for VLSI, Einspruch, N.G. and Brown, D.M., Eds., Orlando: Academic Press, 1984, vol. 8, p. 469.Google Scholar
  3. 3.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987.Google Scholar
  4. 4.
    Chen, F.F., Introduction to Plasma Physics and Controlled Fusion. Vol. 1: Plasma Physics, New York: Plenum Press, 1984.Google Scholar
  5. 5.
    Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Material Processing, New York: Wiley, 1994.Google Scholar
  6. 6.
    Gorbatkin, S.M., Berry, L.A., and Roberto, J.B., J. Vac. Sci. Technol. A, 1990, vol. 8, no.3, p. 2893.CrossRefADSGoogle Scholar
  7. 7.
    Hishimura, H., Kiuchi, M., and Matsuo, S., Jpn. J. Appl. Phys., 1993, vol. 32, p. 232.Google Scholar
  8. 8.
    Hidaka, R., Yamaguchi, T., Hirotsu, N., et al., Jpn. J. Appl. Phys., 1993, vol. 32, p. 174.CrossRefGoogle Scholar
  9. 9.
    Miyazawa, W., Tada, S., Ito, K., et al., Plasma Sources Sci. Technol., 1996, vol. 5, p. 265.CrossRefADSGoogle Scholar
  10. 10.
    Hatta, A., Ushigusa, Y., Yaska, Y., and Itatani, R., Plasma Sources Sci. Technol., 1996, vol. 5, p. 28.ADSGoogle Scholar
  11. 11.
    Le Coeur, F., Lagarde, T., Pelletier, J., et al., Rev. Sci. Instrum., 1998, vol. 69, no.2, Part 2, p. 831.ADSGoogle Scholar
  12. 12.
    Pelletier, J., Microwave Discharges: Fundamentals and Applications, Ferreira, C. and Moisan, M., Eds., New York: Plenum Press, 1993.Google Scholar
  13. 13.
    Lampe, M., Joyce, G., and Slinker, S.P., IEEE Trans. Plasma Sci., 1998, vol. 26, no.6, p. 1592.CrossRefGoogle Scholar
  14. 14.
    Petrin, A.B., IEEE Trans. Plasma Sci., 2000, vol. 28, no.5, p. 1763.CrossRefGoogle Scholar
  15. 15.
    Pelletier, J., Distributed ECR Plasma Sources. High Density Plasma Sources: Design, Physics and Performance, Popov, O.A., Ed., Park Ridge: Noyes, 1995.Google Scholar
  16. 16.
    Lieberman, M.A. and Godyak, V.A., IEEE Trans. Plasma Sci., 1998, vol. 26, no.3, p. 955.CrossRefGoogle Scholar
  17. 17.
    Russell, C.T., IEEE Trans. Plasma Sci., 2000, vol. 28, no.6, p. 1818.CrossRefGoogle Scholar
  18. 18.
    Lagarde, T., Pelletier, J., and Arnal, Y., Plasma Sources Sci. Technol., 1997, vol. 6, p. 53.ADSGoogle Scholar
  19. 19.
    Lacoste, A., Lagarde, T., B'echu, S., et al., Plasma Sources Sci. Technol., 2002, vol. 11, p. 407.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. B. Petrin
    • 1
  1. 1.Institute of High Energy Densities, Joint Institute of High TemperaturesRussian Academy of Sciences (IVTAN)MoscowRussia

Personalised recommendations