Advertisement

High Temperature

, Volume 43, Issue 2, pp 247–258 | Cite as

Modeling of thermal radiation of polymer coating containing hollow microspheres

  • L. A. Dombrovsky
Heat and Mass Transfer and Physical Gasdynamics

Abstract

The paper deals with the effect of hollow microspheres added to paint or another polymer coating for open surfaces of a building on the heat loss due to thermal radiation. An approximate theoretical model is suggested, which is based on the spectral calculation of the radiative characteristics of a disperse system and determination of the integral flux of thermal radiation. Calculations are performed for a layer of paint with hollow glass microspheres. It is demonstrated that the microsphere shell thickness has the strongest effect on the reduction of heat loss.

Keywords

Radiation Polymer Physical Chemistry Theoretical Model Heat Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Orel, Z.C. and Gunde, M.K., Sol. Energy Mater., 2001, vol. 68, no. 3–4, p. 337.CrossRefGoogle Scholar
  2. 2.
    Berdahl, P., Energy Build., 1995, vol. 22, no. 3, p. 187.CrossRefGoogle Scholar
  3. 3.
    Berdahl, P., ASME J. Heat Transfer, 1995, vol. 117, no. 2, p. 355.Google Scholar
  4. 4.
    Wiseman, B.K. and Khan, J.A., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 12, p. 2291.CrossRefMATHGoogle Scholar
  5. 5.
    Johnson, J.A., Heidenreich, J.J., Mantz, R.A. et al., Prog. Org. Coat., 2003, vol. 47, no. 3–4, p. 432.CrossRefGoogle Scholar
  6. 6.
    Hulst, van de, H.C., Light Scattering by Small Particles, New York: Wiley, 1957.Google Scholar
  7. 7.
    Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.Google Scholar
  8. 8.
    Viskanta, R. and Mengüc, M.P., Appl. Mech. Rev., 1989, vol. 42, no. 9, p. 241.CrossRefGoogle Scholar
  9. 9.
    Dombrovsky, L.A., Radiation Heat Transfer in Disperse Systems, New York: Begell House, 1996.Google Scholar
  10. 10.
    Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., J. Quant. Spectrosc. Radiat. Transfer, 1996, vol. 55, no. 5, p. 535.ADSGoogle Scholar
  11. 11.
    Kahnert, F.M., J. Quant. Spectrosc. Radiat. Transfer, 2003, vol. 79–80, p. 775.Google Scholar
  12. 12.
    Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge University Press, 2002.Google Scholar
  13. 13.
    Mishchenko, M.I., Mackowski, D.W., and Travis, L.D., Appl. Opt., 1995, vol. 34, no. 21, p. 4589.ADSCrossRefGoogle Scholar
  14. 14.
    Mackowski, D.W. and Mishchenko, M.I., J. Opt. Soc. Am. A, 1996, vol. 13, no. 11, p. 2266.ADSGoogle Scholar
  15. 15.
    Xu, Y.-I., Appl. Opt., 1997, vol. 36, no. 36, p. 9496.CrossRefADSGoogle Scholar
  16. 16.
    Vargas, W.E., J. Quant. Spectrosc. Radiat. Transfer, 2003, vol. 78, no. 2, p. 187.ADSGoogle Scholar
  17. 17.
    Auger, J.-C., Barrera, R.G., and Stout, B., J. Quant. Spectrosc. Radiat. Transfer, 2003, vol. 79–80, p. 521.Google Scholar
  18. 18.
    Ivanov, A.P., Loiko, V.A., and Dik, V.P., Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Propagation of Light in Close-Packed Disperse Media), Minsk: Nauka i Tekhnika, 1988.Google Scholar
  19. 19.
    Singh, B.P. and Kaviany, M., Int. J. Heat Mass Transfer, 1992, vol. 35, no. 6, p. 1397.Google Scholar
  20. 20.
    Jin, Y.-Q., J. Quant. Spectrosc. Radiat. Transfer, 1988, vol. 39, no. 2, p. 83.ADSGoogle Scholar
  21. 21.
    Ponyavina, A.N., Zh. Prikl. Spektrosk., 1998, vol. 65, no. 5, p. 721.Google Scholar
  22. 22.
    Loiko, V.A. and Berdnik, V.V., Opt. Spektrosk., 2003, vol. 95, no. 5, p. 855.CrossRefGoogle Scholar
  23. 23.
    Budov, V.V., Steklo Keram., 1994, no. 7, p. 7.Google Scholar
  24. 24.
    Moiseev, S.S., Petrov, V.A., and Stepanov, S.V., Teplofiz. Vys. Temp., 2004, vol. 42, no. 1, p. 137 (High Temp. (Engl. transl.), vol. 42, no. 1).Google Scholar
  25. 25.
    Dombrovsky, L.A., Teplofiz. Vys. Temp., 2004, vol. 42, no. 5, p. 772 (High Temp. (Engl. transl.), vol. 42, no. 5, p. 776).Google Scholar
  26. 26.
    Torobin, L.B., US Patent 4 303 732, 1981.Google Scholar
  27. 27.
    Downs, R.L. and Miller, W.J., US Patent 4 336 338, 1982.Google Scholar
  28. 28.
    Martin, A.J. and Pidorenko, J., US Patent 5 713 974, 1998.Google Scholar
  29. 29.
    Gherman, M.L. and Grinchuk, P.S., Inzh. Fiz. Zh., 2002, vol. 75, no. 6, p. 43.Google Scholar
  30. 30.
    Dombrovskii, L.A., Teploenergetika, 1996, no. 3, p. 50.Google Scholar
  31. 31.
    Kondrat’ev, K.Ya., Perenos dlinnovolnovogo izlucheniya v atmosphere (Long-Wave Radiation Transfer in the Atmosphere), Moscow: GITTL, 1950.Google Scholar
  32. 32.
    Berdahl, P. and Fromberg, R., Sol. Energy, 1982, vol. 29, no. 4, p. 299.Google Scholar
  33. 33.
    Nilsson, T.M.J. and Niklasson, G.A., Sol. Energy Mater. Sol. Cells, 1995, vol. 37, no. 1, p. 93.Google Scholar
  34. 34.
    Skartveit, A., Olseth, J.A., Czeplak, G. et al., Sol. Energy, 1996, vol. 56, no. 4, p. 349.Google Scholar
  35. 35.
    Berger, X. and Bathiebo, J., Renewable Energy, 2003, vol. 28, no. 12, p. 1925.Google Scholar
  36. 36.
    Dombrovsky, L.A., J. Quant. Spectrosc. Radiat. Transfer, 2002, vol. 73, no. 2–5, p. 433.ADSGoogle Scholar
  37. 37.
    Tien, C.L. and Drolen, B.L., Annu. Rev. Numerical Fluid Mech. Heat Transfer, 1987, vol. 1, p. 1.ADSGoogle Scholar
  38. 38.
    Dombrovsky, L.A., The Mie Theory Analysis of Comparably Dense Disperse Systems, in Proc. Int. Symp. on Radiative Heat Transfer, Kusadasi, Turkey, 1995, p. 323.Google Scholar
  39. 39.
    Baillis, D. and Sacadura, J.-F., J. Quant. Spectrosc. Radiat. Transfer, 2000, vol. 67, p. 327.ADSGoogle Scholar
  40. 40.
    Dombrovskii, L.A., Teplofiz. Vys. Temp., 2004, vol. 42, no. 1, p. 143 (High Temp. (Engl. transl.), vol. 42, no. 1, p. 146).Google Scholar
  41. 41.
    Mundy, W.C., Roux, J.A., and Smith, A.M., J. Opt. Soc. Am., 1974, vol. 64, no. 12, p. 1593.ADSGoogle Scholar
  42. 42.
    Chylek, P., J. Opt. Soc. Am., 1977, vol. 67, no. 4, p. 561.ADSGoogle Scholar
  43. 43.
    Sudiarta, I.W. and Chylek, P., J. Quant. Spectrosc. Radiat. Transfer, 2001, vol. 70, no. 4–6, p. 709.ADSGoogle Scholar
  44. 44.
    Fu, Q. and Sun, W., Appl. Opt., 2001, vol. 40. no. 9, p. 1354.ADSGoogle Scholar
  45. 45.
    Yang, P., Gao, B.-C., Wiscombe, W.J. et al., Appl. Opt., 2002, vol. 41, no. 15, p. 2740.PubMedADSGoogle Scholar
  46. 46.
    Sun, W., Loeb, N.S., and Fu, Q., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 83, no. 3–4, p. 483.ADSGoogle Scholar
  47. 47.
    Malitson, I.H., J. Opt. Soc. Am., 1965, vol. 5, no. 10, p. 1205.ADSCrossRefGoogle Scholar
  48. 48.
    Tan, C.Z., J. Non-Cryst. Solids, 1998, vol. 223, no. 1–2, p. 158.ADSGoogle Scholar
  49. 49.
    Banner, D., Klarsfeld, S., and Langlais, C., High Temp. High Pressures, 1989, vol. 21, no. 3, p. 347.Google Scholar
  50. 50.
    Tan, C.Z., J. Non-Cryst. Solids, 1999, vol. 249, no. 1, p. 51.ADSGoogle Scholar
  51. 51.
    Dombrovskii, L.A., Teplofiz. Vys. Temp., 1994, vol. 32, no. 2, p. 209 (High Temp. (Engl. transl.), vol. 32, no. 2, p. 197).Google Scholar
  52. 52.
    Dombrovsky, L.A., ASME J. Heat Transfer, 1996, vol. 118, no. 2, p. 408.Google Scholar
  53. 53.
    Grieser, R.H., Prog. Org. Coat., 1975, vol. 3, no. 1, p. 1.Google Scholar
  54. 54.
    Gurevich, M.M., Itsko, E.F., and Seredenko, M.M., Opticheskie svoistva lakokrasochnykh pokrytii (The Optical Properties of Paint-and-Varnish Coatings), Leningrad: Khimiya, 1984.Google Scholar
  55. 55.
    Bower, D.I. and Maddams, W.F., The Vibrational Spectroscopy of Polymers, Cambridge Solid State Science Series, Cambridge: Cambridge University Press, 1989.Google Scholar
  56. 56.
    Saito, M., Gojo, T., Kato, Y. et al., Infrared Phys. Technol., 1995, vol. 36, no. 7, p. 1125.ADSGoogle Scholar
  57. 57.
    Tsilingiris, P.T., Energy Convers. Management, 2003, vol. 44, no. 18, p. 2839.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • L. A. Dombrovsky
    • 1
  1. 1.Joint Institute of High TemperaturesRussian Academy of Sciences (IVTAN)MoscowRussia

Personalised recommendations