High Temperature

, Volume 43, Issue 1, pp 125–130 | Cite as

Analysis of the kinetics of phase transitions in alloys with shape memory effect

  • G. N. Kuvyrkin
  • I. S. Fedulova
Heat and Mass Transfer and Physical Gasdynamics


The laws of rational thermodynamics of irreversible processes are used to suggest a system of constitutive equations, which enable one to take into account the kinetics of phase transition in shape memory alloys. Qualitative analysis is performed of the effect of the form of kinetic equation for preassigning the internal parameter of state which characterizes the phase transition on the variation of temperature of the sample being treated.


Physical Chemistry Qualitative Analysis Phase Transition Constitutive Equation Plasma Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Likhachev, V.A., Kuz’min, S.L., and Kamentseva, Z.P., Effekt pamyati formy (The Shape Memory Effect), Leningrad: Izd. LGU (Leningrad State Univ.), 1987.Google Scholar
  2. 2.
    Abdrakhmanov, S., Deformatsiya materialov s pamyat’yu formy pri termosilovom vozdeistvii (Deformation of Shape Memory Materials Subjected to the Effect of Thermal Forces), Bishkek: Ilim, 1991.Google Scholar
  3. 3.
    Ootsuka, K., Shimizu, K., Suzuki, Yu. et al., Splavy s effektom formy (Shape Memory Alloys), Moscow: Metallurgiya, 1990. (Russ. transl.)Google Scholar
  4. 4.
    Van Vlack, L. H., Textbook of Materials Science, Reading, Mass.: Addison-Wesley, 1973. Translated under the title Teoreticheskoe i prikladnoe materialovedenie, Atomizdat, Moscow, 1975.Google Scholar
  5. 5.
    Lur’e, S.A., Izv. Ross. Akad. Nauk Mekh. Tverd. Tela, 1997, no. 5, p. 110.Google Scholar
  6. 6.
    Movchan, A.A., Izv. Ross. Akad. Nauk Mekh. Tverd. Tela, 1995, no. 1, p. 197.Google Scholar
  7. 7.
    Siderey, N., Patoor, E., Berveiller, A., and Eberhard, A., Int. J. Solids Struct., 1999, vol. 36, no. 8, p. 4289.Google Scholar
  8. 8.
    Marfia, S. and Sacco, E., AIAA J., 2003, vol. 41, no. 1, p. 100.CrossRefGoogle Scholar
  9. 9.
    Zarubin, V.S. and Kuvyrkin, G.N., Matematicheskie modeli termomekhaniki (Mathematical Models of Thermomechanics), Moscow: Fizmatlit, 2002.Google Scholar
  10. 10.
    Zarubin, V.S. and Kuvyrkin, G.N., Teplofiz. Vys. Temp., 2003, vol. 43, no. 2, p. 300 (High Temp. (Engl. transl.), vol. 43, no. 2, p. 257).Google Scholar
  11. 11.
    Prigogine, I. and Kondepudi, D., Modern Thermodynamics: From Heat Engines to Dissipative Structures, New York: Wiley, 1999. Translated under the title Sovremennaya termodinamika. Ot teplovykh dvigatelei do dissipativnykh struktur, Moscow: Mir, 2002.Google Scholar
  12. 12.
    Arutyunyan, R.A., The Potentialities of Synergetic Methods in Fracture Mechanics, Nauchnye trudy V Mezhdunarodnogo seminara “Sovremennye problemy prochnosti” im. V.A. Likhacheva (Proceedings of V V.A. Likhachev International Seminar on Modern Problems in Strength), Novgorod: Yaroslav the Wise Novgorod State Univ., 2001, vol. 1, p. 322.Google Scholar
  13. 13.
    Tikhonov, A.S., Gerasimov, A.P., and Prokhorova, I.I., Primenenie effekta pamyati v sovremennom mashinostroenii (Applications of Shape Memory Effect in Modern Mechanical Engineering), Moscow: Mashinostroenie, 1981.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. N. Kuvyrkin
    • 1
  • I. S. Fedulova
    • 1
  1. 1.Bauman Moscow State Technical University (MGTU)MoscowRussia

Personalised recommendations