Advertisement

High Temperature

, Volume 42, Issue 6, pp 875–878 | Cite as

Low-pressure ultraviolet emitter utilizing chlorine and krypton chloride molecules

  • A. K. Shuaibov
  • I. V. Shevera
  • A. A. General
Plasma Investigations

Abstract

Results are given of an investigation of the electrical and optical characteristics of the plasma of a longitudinal high-frequency discharge in a krypton/chlorine mixture (P ≤ 1000 Pa). The high-frequency discharge is ignited in a cylindrical quartz tube with an inside diameter of 14 mm and a distance between the anode and cathode of 30 mm. The dynamics of current and radiation of the high-frequency discharge utilizing krypton/chlorine mixtures of different compositions and pressures are investigated. It is found that a longitudinal high-frequency in a krypton/chlorine mixture is a broadband excimer-halogen emitter in the 200–260 nm spectral range. The ultraviolet spectrum of the lamp is formed as a result of overlapping of broadened radiation bands of chlorine and krypton chloride molecules (200 nm 2 ** , 222 nm KrCl, and 257 nm Cl 2 * ). The optimal composition of a Kr/Cl2 mixture is determined, which is necessary to obtain the maximal power of ultraviolet radiation.

Keywords

Radiation Chloride Physical Chemistry Quartz Chlorine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Polunin, G.S., Kourenkov, V.V., Polunina, E.G. 1998J. Refractive Surgery14S230Google Scholar
  2. 2.
    Felkenstein, Z., Coogan, J.J. 1997J. Phys. D302704ADSGoogle Scholar
  3. 3.
    Oda, A., Sugawara, S., Sakai, Y., Akashi, H. 2000J. Phys. D331507ADSGoogle Scholar
  4. 4.
    Shuaibov, A.K., Dashchenko, A.I., Shevera, I.V. 2002Kvantovaya Elektron.32279Google Scholar
  5. 5.
    Shuaibov, A.K., Shimon, L.L., Dashchenko, A.I., and Shevera, I.V., Ukrainian Patent 47 628, Byull. Izobret., 2002, no. 7.Google Scholar
  6. 6.
    Shuaibov, A.K., Dashchenko, A.I., Shevera, I.V. 2003Teplofiz. Vys. Temp.4116(High temp. (Engl. transl.), vol. 41, no. sn1, p. 11)Google Scholar
  7. 7.
    Golovitskii, A.P. 1998Pis’ma Zh. Tekh. Fiz.2463Google Scholar
  8. 8.
    Raizer, Yu.P. 1987Fizika gazovogo razryadaNaukaMoscow(The Physics of Gas Discharge)Google Scholar
  9. 9.
    Shuaibov, A.K., Shimon, L.L., Dashchenko, A.I., and Shevera, I.V., Prib. Tekh. Eksp., 2002, no. 1, p. 104.Google Scholar
  10. 10.
    Shuaibov, A.K., Shimon, L.L., Dashchenko, A.I., Shevera, I.V. 2001J. Phys. Studies5131ADSGoogle Scholar
  11. 11.
    Datsyuk, V.V., Izmailov, I.A., Kochelap, V.A. 1998Usp. Fiz. Nauk168439CrossRefGoogle Scholar
  12. 12.
    Kaganovich, I.D. 1995Fiz. Plazmy21431Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • A. K. Shuaibov
    • 1
  • I. V. Shevera
    • 1
  • A. A. General
    • 1
  1. 1.Uzhgorod National UniversityUzhgorodUkraine

Personalised recommendations