Skip to main content
Log in

The Bacterial Cell Wall in the Antibiotic Era: An Ontology in Transit Between Morphology and Metabolism, 1940s–1960s

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

This essay details a historical crossroad in biochemistry and microbiology in which penicillin was a co-agent. I narrate the trajectory of the bacterial cell wall as the precise target for antibiotic action. As a strategic object of research, the bacterial cell wall remained at the core of experimental practices, scientific narratives and research funding appeals throughout the antibiotic era. The research laboratory was dedicated to the search for new antibiotics while remaining the site at which the mode of action of this new substance was investigated. This combination of circumstances made the bacterial wall an ontology in transit. As invisible as the bacterial wall was for clinical purposes, in the biological laboratory, cellular meaning in regard to the action of penicillin made the bacterial wall visible within both microbiology and biochemistry. As a border to be crossed, some components of the bacterial cell wall and the biochemical destruction produced by penicillin became known during the 1950s and 1960s. The cell wall was constructed piece by piece in a transatlantic circulation of methods, names, and images of the shape of the wall itself. From 1955 onwards, microbiologists and biochemists mobilized new names and associated conceptual meanings. The composition of this thin and rigid layer would account for its shape, growth and destruction. This paper presents a history of biochemical morphology: a chemistry of shape – the shape of bacteria, as provided by its wall – that accounted for biology, for life itself. While penicillin was being established as an industrially-manufactured object, it remained a scientific tool within the research laboratory, contributing to the circulation of further scientific objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtel, William. 2006. Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bing, Frederick. 1971. “The History of the Word ‘Metabolism.” Journal of the History of Medicine and Allied Sciences 26: 158–180. doi:10.1093/jhmas/XXVI.2.158.

    Article  Google Scholar 

  • Brandt, Christina. 2004. Metapher und Experiment: von der Virusforschung zum genetischen Code. Göttingen: Wallstein Verlag.

    Google Scholar 

  • Brenner, S., Dark, F.A., Gerhardt, P., Jeynes, M.H., Kandler, O., Kellenberg, E., Klieneberger-Nobel, E., McQuillen, K., Rubio-Huertos, M., Salton, M.R.J., Strange, R.E., Tomsik, J., and Weibull, C. 1958. “Bacterial Protoplasts.” Nature 181: 1713–1715.

    Article  Google Scholar 

  • Bud, Robert. 2007a. Penicillin: Triumph and Tragedy. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Bud, Robert. 2007b. “From Germfobia to Carefree Life and Back Again. The Lifecycle of the Antibiotic Brand.” A. Tone and E.S. Watkins (eds.), Medicating Modern America: Prescription Drugs in History. New York: New York University Press, pp. 17–41.

    Google Scholar 

  • Butenandt, Adolf, Weidel, Wolfhard, and Becker, Erich. 1940. “Kynurenin als Augenpigmentbildung auslosendes Agens bei Insekten.” Die Narturwissenschaften 28: 63–64.

    Article  Google Scholar 

  • Coyette, Jacques, Frère, Jean-Marie, and Reynolds, Peter. 2005. “Jean-Marie Ghuysen.” Molecular Microbiology 57: 871–873.

    Article  Google Scholar 

  • Creager, Angela N. 2002. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago: University of Chicago Press.

    Google Scholar 

  • Creager, Angela N. 2007. “Adaptation or Selection? Old Issues and New Stakes in the Postwar Debates over Bacterial Drug Resistance.” Studies in History and Philosophy of Biological and Biomedical Sciences 38: 159–190.

    Article  Google Scholar 

  • Deichmann, Utte. 2002a. “Chemists and Biochemists During the National Socialist Era.” Angewandte Chemie International Edition 41: 1310–1328.

    Article  Google Scholar 

  • Deichmann, Utte. 2002b. “Emigration, Isolation and the Slow Start of Molecular Biology in Germany.” Studies in History and Philosophy of Biological and Biomedical Sciences 33: 449–471.

    Article  Google Scholar 

  • Gadebusch, Hans H., Stapley, Edward O., and Zimmerman, Sheldon B. 1992. “The Discovery of Cell Wall Active Antibacterial Antibiotics.” Critical Reviews in Biotechnology 12: 225–243.

    Article  Google Scholar 

  • Gardner, A.D. 1940. “Morphological Effects of Penicillin on Bacteria.” Nature 146: 837.

    Article  Google Scholar 

  • Gaudillière, Jean-Paul. 2002. Inventer la biomédecine: la France, l’Amérique et la production des savoirs du vivant, 1945–1965. Paris: La découverte.

    Google Scholar 

  • Gaudillière, Jean-Paul. 2008. “Professional or Industrial Order? Patents, Biological Drugs, and Pharmaceutical Capitalism in Early Twentieth Century Germany.” History and Technology 24: 107–133.

    Article  Google Scholar 

  • Geison, Gerald L. 1969. “The Protoplasmic Theory of Life and the Vitalist-Mechanist Debate.” Isis 60: 273–292.

    Article  Google Scholar 

  • Ghuysen, Jean-Marie. 1960. “Acetylhexosamine Compounds Enzymically Released from Micrococcus lysodeikticus Cell Walls: II. Enzymic Sensitivity of Purified Acetylhexosamine and Acetylhexosamine-Peptide Complexes.” Biochimica et Biophysica Acta 40: 473–480.

    Article  Google Scholar 

  • Ghuysen, Jean-Marie. 1961. “Précisions sur la structure des complexes disaccharide-peptide libérés des parois de Micrococcus lysodeikticus sous l’action des β (I → 4) N-acetyl-hexosaminidases.” Biochimica et Biophysica Acta 47: 561–568.

    Article  Google Scholar 

  • Ghuysen, Jean-Marie. 1968. “Use of Bacteriolytic Enzymes in Determination of Wall Structure and Their Role in Cell Metabolism.” Bacteriological reviews 32(4): 425–464.

    Google Scholar 

  • Ghuysen, Jean-Marie. 1977. “The Concept of the Penicillin Target from 1965 Until Today: The Thirteenth Marjory Stephenson Memorial Lecture.” Journal of General Microbiology 101: 13–33.

    Article  Google Scholar 

  • Ghuysen, Jean-Marie and Salton, Milton R.J. 1960. “Acetylhexosamine Compounds Enzymically Released from Micrococcus lysodeikticus Cell Walls: I. Isolation and Composition of Acetylhexosamine and Acetylhexosamine-Peptide Complexes.” Biochimica et Biophysica Acta 40: 462–472.

    Article  Google Scholar 

  • Ghuysen, Jean-Marie and Strominger, Jack L. 1963. “Structure of the Cell Wall of Staphylococcus aureus, Strain Copenhagen. II. Separation and Structure of Disaccharides.” Biochemistry 2: 1119–1125.

    Article  Google Scholar 

  • Gradmann, Christoph. 2011. “Magic Bullets and Moving Targets: Antibiotic Resistance and Experimental Chemotherapy.” Dynamis 31: 305–321.

    Article  Google Scholar 

  • Gradmann, Christoph. 2013. “Sensitive Matters: The World Health Organisation and Antibiotic Resistance Testing, 1945–1975.” Social History of Medicine 26: 555–574.

    Article  Google Scholar 

  • Grote, Mathias. 2010. “Surfaces of Action: Cells and Membranes in Electrochemistry and the Life Sciences.” Studies in History and Philosophy of Biological and Biomedical Sciences 41: 183–193.

    Article  Google Scholar 

  • Grote, Mathias. 2013. “Purple Matter, Membranes and ‘Molecular Pumps’ in Rhodopsin Research (1960s–1980s).” Journal of the History of Biology 46: 331–368.

    Article  Google Scholar 

  • Grote, Mathias and O’Malley, Maureen A. 2011. “Enlightening the Life Sciences: The History of Halobacterial and Microbial Rhodopsin Research.” FEMS Microbiology Reviews 35: 1082–1099.

    Article  Google Scholar 

  • Hendlin, D., Stapley, E.O., Jackson, M., Wallick, H., Miller, A.K., Wolf, F.J., Miller, T.W., Chaiet, L., Kahan, F.M., Foltz, E.L., Woodruff, H.B., Mata, J.M., Hernández, S., and Mochales, S. 1969. “Phosphonomycin, A New Antibiotic Produced by Strains of Streptomyces.” Science 166: 122–123.

    Article  Google Scholar 

  • Hobby, Gladys. 1985. Penicillin. Meeting the Challenge. New Haven/London: Yale University Press.

    Google Scholar 

  • Holmes, Frederic L. 1992. Between Biology and Medicine: The Formation of Intermediary Metabolism. Berkeley: University of California, Office for the History of Science.

    Google Scholar 

  • Hüntelmann, Axel C. 2012. “Priority, Property and Trust: Patent Laws and Pharmaceuticals in the German Empire.” Interdisciplines 2: 194–226.

    Google Scholar 

  • Kay, Lily E. 1985. “Conceptual Models and Analytical Tools: The Biology of Physicist Max Delbrück.” Journal of the History of Biology 18: 207–246.

    Article  Google Scholar 

  • Kay, Lily E. 1996. The Molecular Vision of Life: Caltech, the Rockefeller Foundation, and the Rise of the New Biology. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Keating, Peter, Cambrosio, Albert. 2003. Biomedical Platforms: Realigning the Normal and the Pathological in Late-Twentieth-Century Medicine. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kohler, Robert E. 1973. “The Enzyme Theory and the Origin of Biochemistry.” Isis 64: 181–196.

    Article  Google Scholar 

  • Kohler, Robert E. 1982. From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Landecker, Hannah. 2013. “Postindustrial Metabolism: Fat Knowledge.” Public Culture 25: 495–522.

    Article  Google Scholar 

  • Lederberg, Joshua. 1956. “Bacterial Protoplasts Induced by Penicillin.” Proceedings of the National Academy of Sciences of the United States of America 42: 574–578.

    Article  Google Scholar 

  • Lederberg, Joshua. 1957. “Mechanism of Action of Penicillin.” Journal of Bacteriology 73: 144.

    Google Scholar 

  • Lederberg, Joshua. 1958. Nobel Lecture: A View of Genetics. Nobelprize.org. Nobel Media at http://www.nobelprize.org/nobel_prizes/medicine/laureates/1958/lederberg-lecture.html. Accessed 24 February 2015.

  • Lederberg, Joshua and St. Clair, Jacqueline. 1958. “Protoplasts and L-type Growth of Escherichia coli.” Journal of Bacteriology 75: 143–160.

    Google Scholar 

  • Lesch, John. 2007. The First Miracle Drugs. How Sulfa Drugs Transformed Medicine. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Lie, Anne Kveim. 2014. “Producing Standards, Producing the Nordic Region: Antibiotic Susceptibility Testing, from 1950–1970.” Science in Context 27: 215–248. doi:10.1017/S0269889714000052.

    Article  Google Scholar 

  • Löwy, Ilana. 1996. Between Bench and Bedside: Science, Healing, and Interleukin-2 in a Cancer Ward. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Marks, Harry. 1997. The Progress of Experiment: Science and Therapeutic Reform in the United States, 1900–1990. Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, H.H. 1963. “Bacterial Protoplasts – A Review.” Journal of Theoretical Biology 5: 1–34.

    Article  Google Scholar 

  • McQuillen, Kenneth. 1955. “Bacterial Protoplasts: Growth and Division of Protoplasts of Bacillus megaterium.” Biochimica et Biophysica Acta 18: 458–461.

    Article  Google Scholar 

  • McQuillen, Kenneth. 1960. “Bacterial protoplasts.” I.C. Gunsalus and R.Y. Stanier (eds.), The Bacteria: A treatise on Structure and Function. New York/London: Academic Press, pp. 249–359.

    Google Scholar 

  • McQuillen, Kenneth and Salton, Milton R.J. 1955. “Synthetic Media for Maintenance and Induction of Lysogenic Bacillus megaterium.” Biochimica et Biophysica Acta 16: 596–597.

    Article  Google Scholar 

  • Melchers, Georg. 1964. “Wolfhard Weidel.” Mitteilungen aus der Max-Planck-Gessellschaft, Heft 5(6): 226–233.

    Google Scholar 

  • Mickle, H. 1948. “II. —Tissue Disintegrator”. Journal of the Royal Microscopical Society 68(1–4): 10–12

  • Nathenson, Stanley G. and Strominger, Jack L. 1961. “Effects of Penicillin on the Biosynthesis of the Cell Walls of Escherichia coli and Staphylococcus aureus.” Journal of Pharmacology and Experimental Therapeutics 131: 1–6.

    Google Scholar 

  • Nyhart, L.K. 1995. Biology Takes Form: Animal Morphology and the German Universities, 1800–1900. Chicago: University of Chicago Press.

    Google Scholar 

  • Park, James T. 1952a. “Uridine-5′-pyrophosphate Derivatives. I. Isolation from Staphylococcus aureus.” Journal of Biological Chemistry 194: 877–884.

    Google Scholar 

  • Park, James T. 1952b. “Uridine-5′-pyrophosphate Derivatives. II. Isolation from Staphylococcus aureus.” Journal of Biological Chemistry 194: 855–895.

    Google Scholar 

  • Park, James T. 1952c. “Uridine-5′-pyrophosphate Derivatives. III. Amino acid-Containing Derivatives.” Journal of Biological Chemistry 194: 897–904.

    Google Scholar 

  • Park, James T. and Johnson, Marvin J. 1949. “Accumulation of Labile Phosphate in Staphylococcus aureus Grown in the Presence of Penicillin.” Journal of Biological Chemistry 179: 585–592.

    Google Scholar 

  • Park, James T. and Strominger, Jack L. 1957. “Mode of Action of Penicillin.” Science 125: 99–101.

    Article  Google Scholar 

  • Perkins, H.R. and Nieto, M. 1974. “The Chemical Basis for the Action of the Vancomycin Group of Antibiotics.” Annals of the New York Academy of Sciences 235(1): 348–363.

    Article  Google Scholar 

  • Podolsky, Scott H. 2010. “Antibiotics and the Social History of the Controlled Clinical Trial.” Journal for the History of Medicine and Allied Sciences 65: 327–367.

    Article  Google Scholar 

  • Podolsky, Scott H. 2014. The Antibiotic Era: Reform, Resistance, and the Pursuit of a Rational Therapeutics. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Rasmussen, Nicolas. 1997. Picture Control: The Electron Microscope and the Transformation of Biology in America, 1940–1960. Stanford:Stanford University Press.

    Google Scholar 

  • Reissig, José L., Strominger, Jack L., and Leloir, Luis F. 1955. “A Modified Colorimetric Method for the Estimation of N-acetylamino Sugars.” Journal of Biological Chemistry 217: 959–966.

    Google Scholar 

  • Rheinberger, Hans-Jörg. 1996. “Comparing Experimental Systems: Protein Synthesis in Microbes and in Animal Tissue at Cambridge (Ernest F. Gale) and at the Massachusetts General Hospital (Paul C. Zamecnik), 1945–1960.” Journal of the History of Biology 29: 387–416.

    Article  Google Scholar 

  • Rheinberger, Hans-Jörg. 2000. “Ephestia: The Experimental Design of Alfred Kühn’s Physiological Developmental Genetics.” Journal of the History of Biology 33: 535–576.

    Article  Google Scholar 

  • Romero de Pablos, Ana. 2011. “Regulation and the Circulation of Knowledge: Penicillin Patents in Spain.” Dynamis 31: 87–107.

    Article  Google Scholar 

  • Romero de Pablos, Ana. 2014. “Patents, Antibiotics, and Autarky in Spain.” Medicina nei Secoli 26(2): 423–449.

    Google Scholar 

  • Salton, M.R.J. 1957. “The Properties of Lysozyme and Its Action on Microorganisms.” Bacteriological Reviews 21: 82–99.

    Google Scholar 

  • Salton, Milton R. 1952. “Cell Wall of Micrococcus lysodeikticus as the Substrate of Lysozyme.” Nature 170: 746.

    Article  Google Scholar 

  • Salton, Milton R.J. 1953. “Cell Structure and the Enzymic Lysis of Bacteria.” Journal of General Microbiology 9: 512–523.

    Article  Google Scholar 

  • Salton, Milton R.J. 1960. Microbial Cell Walls. New York/London:Wiley.

    Book  Google Scholar 

  • Salton, Milton R.J. and Ghuysen, Jean-Marie. 1960. “Acetylhexosamine Compounds Enzymically Released from Micrococcus lysodeikticus Cell Walls: III. The Structure of Di-and tetra-saccharides Released from Cell Walls by Lysozyme and Streptomyces F1 Enzyme.” Biochimica et Biophysica Acta 45: 355–363.

    Article  Google Scholar 

  • Salton, Milton R.J. and McQuillen, Kenneth. 1955. “Bacterial Protoplasts: II. Bacteriophage Multiplication in Protoplasts of Sensitive and Lysogenic Strains of Bacillus megaterium.” Biochimica et Biophysica Acta 17: 465–472.

    Article  Google Scholar 

  • Salton, Milton R. and Horne, R.W. 1951. “Studies of the Bacterial Cell Wall II. Methods of Preparation and Some Properties of Cell Walls.” Biochimica et Biophysica Acta 7: 177–197.

    Article  Google Scholar 

  • Santesmases, María Jesús. 2002. “Enzymology at the Core: Primers and Templates in Severo Ochoa’s Transition from Biochemistry to Molecular Biology.” History and Philosophy of the Life Sciences 24: 193–218.

    Article  Google Scholar 

  • Santesmases, María Jesús. 2011a. “Screening Antibiotics: Industrial Research by CEPA and Merck in the 1950s.” Dynamis 31: 407–427.

    Article  Google Scholar 

  • Santesmases, María Jesús. 2011b. “Circulación postcolonial de autoridad entre Argentina y España: Viajes y tránsitos de la fisiología y la bioquímica, 1936–1981.” M. Albornoz and J. Sebastián (eds.), Trayectorias de las políticas científicas y universitarias en Argentina y España. Madrid: CSIC, pp. 39–66.

    Google Scholar 

  • Santesmases, María Jesús. 2014. “Gender in Research and Industry: Women in Antibiotic Factories in 1950s Spain.” Teresa Ortiz-Gómez and María Jesús Santesmases (eds.), Gendered Drugs and Medicine: Historical and Socio-cultural Perspective. Farham: Ashgate, pp. 61–84.

  • Santesmases, María Jesús and Gradmann, Christoph. 2011. “Circulation of Antibiotics: An Introduction.” Dynamis 31: 293–303.

    Article  Google Scholar 

  • Santesmases, María Jesús and Suárez-Díaz, Edna. 2015. “A Cell-Based Epistemology: Human Genetics in the Era of Biomedicine.” Historical Studies in the Natural Sciences 45: 1–13.

    Article  Google Scholar 

  • Silver, Lynn L. 2012. “Rational Approaches to Antibacterial Discovery: Pre-genomic Directed and Phenotypic Screening.” T.J. Dougherty and M.J. Pucci (eds.), Antibiotic Discovery and Development. New York: Springer, pp. 33–75.

    Chapter  Google Scholar 

  • Smith, L.D. and Hay, T. 1942. “The Effect of Penicillin on the Growth and Morphology of Staphylococcus aureus.” Journal of the Franklin Institute 233: 598–602.

    Article  Google Scholar 

  • Strominger, Jack L. 1957. “Microbial Uridine-5′-pyrophosphate N-acetylamino sugar Compounds. I. Biology of the Penicillin-Induced Accumulation.” Journal of Biological Chemistry 224: 509–523.

    Google Scholar 

  • Strominger, Jack L. 2006. “The Tortuous Journey of a Biochemist to Immunoland and What He Found There.” Annual Review of Immunology 24: 1–31.

    Article  Google Scholar 

  • Strominger, Jack L. 2007. “Bacterial Cell Walls, Innate Immunity and Immunoadjuvants.” Nature Immunology 8: 1269–1271.

    Article  Google Scholar 

  • Strominger, Jack L. and Ghuysen, Jean-Marie. 1967. “Mechanisms of Enzymatic Bacteriaolysis.” Science 156: 213–221.

    Article  Google Scholar 

  • Strominger, Jack L., Park, James T., and Thompson, Richard E. 1959. “Composition of the Cell Wall of Staphylococcus aureus: Its Relation to the Mechanism of Action of Penicillin.” Journal of Biological Chemistry 234: 3263–3268.

    Google Scholar 

  • Waksman, Selman. 1947. “What is an Antibiotic or Antibiotic Substance?’ Mycologia 39: 565–569.

    Article  Google Scholar 

  • Weidel, Wolfhard. 1950. “Supplementary Information on Receptor Spots.” Max Delbrück (ed.), Viruses 1950: Conference on the Similarities and Dissimilarities Between Viruses Attacking Animals, Plants and Bacteria. Pasadena: California Institute of Technology, pp. 119–121.

    Google Scholar 

  • Weidel, Wolfhard. 1953. Phage Receptor Systems of E. coli B. Cold Spring Harbor Symposia on Quantitative Biology 18: 155–157.

  • Weidel, Wolfhard. 1957. Virus; die Geschichte vom geborgten Leben. Heidelberg: Springer.

    Google Scholar 

  • Weidel, Wolfhard. 1959. Virus. Translated by Lotte Streisinger. Ann Arbor: University of Michigan Press.

  • Weidel, Wolfhard. 1964. Virus und Molekularbiologie; eine elementare Einführung. Heidelberg: Springer.

    Book  Google Scholar 

  • Weidel, Wolfhard and Kellenberger, Edward. 1955. “The E. coli B-receptor for the Phage T 5. II. Electron Microscopic Studies.” Biochimica et Biophysica Acta 17: 1–9.

    Article  Google Scholar 

  • Weidel, Wolfhard and Primosigh, J. 1958. “Biochemical Parallels Between Lysis by Virulent Phage and Lysis by Penicillin.” Journal of General Microbiology 18: 513–517.

    Article  Google Scholar 

  • Weidel, Wolfhard and Pelzer, H. 1964. “Bag-Shaped Macromolecules. A New Outlook on Bacterial Cell Walls.” Advances in Enzymology 26: 193–232.

    Google Scholar 

  • Weidel, Wolfhard, Frank, H., and Martin, H.H. 1960. “The Rigid Layer of the Cell Wall of Escherichia coli Strain B.” Journal of General Microbiology 22: 158–166.

    Article  Google Scholar 

  • Yi, Doogab. 2009. “The Scientific Commons in the Marketplace: The Industrialization of Biomedical Materials at the New England Enzyme Center, 1963–1980.” History and Technology 25: 69–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Santesmases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santesmases, M.J. The Bacterial Cell Wall in the Antibiotic Era: An Ontology in Transit Between Morphology and Metabolism, 1940s–1960s. J Hist Biol 49, 3–36 (2016). https://doi.org/10.1007/s10739-015-9417-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-015-9417-4

Keywords

Navigation