Journal of the History of Biology

, Volume 39, Issue 1, pp 125–163 | Cite as

An Issue of Originality and Priority: The Correspondence and Theories of Oxidative Phosphorylation of Peter Mitchell and Robert J.P. Williams, 1961–1980



In the same year, 1961, Peter D. Mitchell and Robert R.J.P. Williams both put forward hypotheses for the mechanism of oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts. Mitchell’s proposal was ultimately adopted and became known as the chemiosmotic theory. Both hypotheses were based on protons and differed markedly from the then prevailing chemical theory originally proposed by E.C. (Bill) Slater in 1953, which by 1961 was failing to account for a number of experimental observations. Immediately following the publication of Williams’s hypothesis and before his own was published, Mitchell initiated a correspondence. Examination of the letters shows the development of a dispute based on the validity of the proposals, who should have priority and particularly whether Mitchell had drawn on Williams’s work without acknowledgement. We have concluded that Mitchell’s proposals were original (a view still questioned by Williams) although it is evident that prior to the correspondence Williams had considered and rejected a proposition similar to Mitchell’s theory. However, a major cause of the dispute was the difference in disciplinary backgrounds of Mitchell, a microbial biochemist and Williams, a chemist.


bioenergetics chemiosmotic hypothesis chemiosmotic theory Mitchell P. originality oxidative phosphorylation plagiarism priority Williams R.J.P. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allchin, Douglas. 1997“A Twentieth-Century Phlogiston: Constructing Error and Differentiating Domains”Perspectives in Science581127Google Scholar
  2. Bechtel, William 1986Biochemistry: A cross-disciplinary endeavor that discovered a distinctive domainBechtel, William eds. Integrating Scientific DisciplinesMartinus NijhoffDordrecht77100Google Scholar
  3. Boyer, Paul D. 1970. A discussion note, in: J.M. Tager, S. Papa, E. Quagliariello and E.C. Slater (eds.), Electron transport and Energy Conservation. Bari: Adriatica Editrice, 380 pp.Google Scholar
  4. Boyer, Paul D. 1975a“Energy Transduction and Proton Translocation by Adenosine Triphosphatases”FEBS Letters509194CrossRefGoogle Scholar
  5. Boyer, Paul D. 1975b“A Model for Conformational Coupling of Membrane Potential and Proton Translocation to ATP Synthesis and to Active Transport”FEBS Letters5816CrossRefGoogle Scholar
  6. Davies, Robert E, Krebs, Hans A. 1952“The Biochemical Aspects of the Transport of Ions by Nervous TissueBiochem”Biochemical Society Symposium87792Google Scholar
  7. Davies, Robert E, Ogston, Alexander G. 1950“On the Mechanism of Secretion of Ions by Gastric Mucosae and Other Tissues”Biochemical Journal4632433Google Scholar
  8. Ernster, Lars, Schatz, Gottfried 1981“Mitochondria, A Historical Review”Journal of Cell Biology91227s255sCrossRefGoogle Scholar
  9. Fuller, Steve 2000Thomas Kuhn: A Philosophical History for Our TimesUniversity of Chicago PressChicagoGoogle Scholar
  10. Hutchings, D, Williams, R.J.P. 1956“Some Uses of Ion-Exchange Membrane Electrodes”Faraday Society Discussions21192Google Scholar
  11. Hull, David L. 1988Science as a ProcessUniversity of Chicago PressChicagoGoogle Scholar
  12. Irving, H., Williams, R.J.P. 1950“The Effect of Time and Temperature on Potentials Measured with the Glass Electrode”Journal of the Chemical Society19502890Google Scholar
  13. Kalckar, Hermann M. 1969Biological Phosphorylations, Development of ConceptsPrentice HallEnglewood Cliffs, NJGoogle Scholar
  14. Kantorovich, Aharon 1993Scientific Discovery. Logic and TinkeringState University of New York PressAlbany, NYGoogle Scholar
  15. Kuhn, Thomas 1959The essential Tension: Tradition and Innovation in Scientific ResearchTaylor, C.W. eds. The Third (1959) University of Utah Research Conference on the Identification of Scientific TalentUniversity of Utah PressSalt Lake City162174Reprinted in Kuhn, Thomas S. 1977. The Essential Tension, University of Chicago PressGoogle Scholar
  16. Kuhn, Thomas 1962“The Historical Structure of Scientific Discovery”Science136760764Reprinted in Kuhn, Thomas S. 1977. The Essential Tension, University of Chicago PressGoogle Scholar
  17. Kushmerick, Martin J. 2001“Robert Ernest Davies”Biog. Mems. Fell. R. Soc. Lond47141157Google Scholar
  18. Lehninger, Albert L. 1962“Water Uptake and Extrusion by Mitochondria in Relation to Oxidative Phosphoylation”Physiological Reviews42467517Google Scholar
  19. Lehninger, Albert L. 1964The MitochondrionBenjaminNew YorkGoogle Scholar
  20. Lehninger, Albert L., Wadkins, C.L. 1962“Oxidative Phosphorylation”Annual Review of Biochemistry314778CrossRefGoogle Scholar
  21. Lipmann, Fritz 1946‘Metabolic process Patterns’ in Currents in Biochemical ResearchInterscience PublishersNew York137148Google Scholar
  22. Milner, R. 2002“Putting Darwin in his place”Scientific American287103104Google Scholar
  23. Mitchell, Peter. 1959“Structure and Function in Microorganisms”Biochemical Society Symposium167393Google Scholar
  24. Mitchell, Peter. 1961a“Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-osmotic Type of Mechanism”Nature191144148Google Scholar
  25. Mitchell, Peter 1961b“Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation”Biochem. J.7923P24PGoogle Scholar
  26. Mitchell, Peter. 1961cApproaches to the Analysis of Specific Membrane TransportGoodwin, T.W.Lindberg, O. eds. Biological Structure and FunctionAcademic PressLondon581603Google Scholar
  27. Mitchell, Peter. 1962“Metabolism, Transport and Morphogenesis: Which Drives Which?”Journal of General Microbiology292537Google Scholar
  28. Mitchell, Peter. 1963“Molecule, Group and Electron Translocation Through Natural Membranes”Biochemical Society Symposium22142169Google Scholar
  29. Mitchell, Peter. 1965“Stoichiometry of Proton Translocation through the Respiratory Chain and Adenosine Triphosphatase Systems of Rat Liver Mitochondria”Nature2081478151Google Scholar
  30. Mitchell, Peter. 1966a“Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation”Biological Reviews41445502Google Scholar
  31. Mitchell, Peter. 1966bChemiosmotic Coupling in Oxidative and Photosynthetic PhosphorylationGlynn Research LimitedBodmin, CornwallGoogle Scholar
  32. Mitchell, Peter. 1974“A Chemiosmotic Molecular Mechanism for Proton-Translocating Adenosine Triphoshatases”FEBS Letters43189194CrossRefGoogle Scholar
  33. Mitchell Peter. 1981. “From Black-box Bioenergetics to Molecular Mechanics: Vectorial Ligand Conduction Mechanisms in Biochemistry.” G. Semenza (ed.), Of Oxygen, Fuels and Living Matter Vol. 1. New York, pp. 1–160.Google Scholar
  34. Mitchell, Peter, Moyle, Jennifer. 1956“Osmotic Function and Structure in Bacteria”Symposium for the Society for General Microbiology6150180Google Scholar
  35. Mitchell, Peter 1958“Group-Translocation: A Consequence of Enzyme-Catalysed Group-Transfer”Nature182372373Google Scholar
  36. Prebble, John N. 1996“Successful Theory Development in Biology. A Consideration of the Theories of Oxidative Phosphorylation proposed by Davies & Krebs, Williams, and Mitchell”Bioscience Reports16207215CrossRefGoogle Scholar
  37. Prebble, John N. 1999“What makes Biochemical Heroes?”The Biochemist214749Google Scholar
  38. Prebble, John N. 2001“The Philosophical Origins of Mitchell’s Chemiosmotic Concepts. The Personal Factor in Scientific Theory Formulation”Journal of History of Biology34433460Google Scholar
  39. Prebble, John N. 2002“Peter Mitchell and the ox phos Wars”Trends in Biochemical Sciences27209212Google Scholar
  40. Prebble, John N., Weber, Bruce H 2003Wandering in the Gardens of the Mind. Peter Mitchell and the making of GlynnOxford University PressNew YorkGoogle Scholar
  41. Robertson, Robert N. 1960“Ion Transport and Respiration”Biological Reviews35231264Google Scholar
  42. Shapin, Steven. 1982“History of Science and its Sociological Reconstructions”History of Science20157203Google Scholar
  43. Slater, Edward C. 1953“The Mechanism of phosphorylation in the Respiratory Chain”Nature172975978Google Scholar
  44. Slater, Edward C. 1966. “Oxidative Phosphorylation.” Florkin Marcel and H. Stotz. Elmer (eds.), Comprehensive Biochemistry 14: 327–396. Amsterdam.Google Scholar
  45. Slater, Edward C. 1970IntroductionTager, J.M.Papa, S.Quagliariello, E.Slater, E.C. eds. Electron Transport and Energy ConservationAdriatica EditriceBari14Google Scholar
  46. Verkhovsky, M.I., Jasaitis, A., Verkhovsky, M.L., Morgan, J.E., Wikström, Mårten. 1999“Proton translocation by cytochrome oxidase”Nature400380483Google Scholar
  47. Weber, Bruce H 1986The Impact of the Prague Symposium on the Conceptual Development of Bioenergetics: A Retrospective and Prospective ViewAlvarado, F.Os, C.H. eds. Ion Gradient-Coupled Transport INSERM Symp.26ElsevierAmsterdam19Google Scholar
  48. Weber, Bruce H 1991“Glynn and the Conceptual Development of the Chemiosmotic Theory: A Retrospective and Prospective View”Bioscience Reports11577647p. 587CrossRefGoogle Scholar
  49. Williams, Robert J.P. 1959. “Coordination, Chelation and Catalysis.” P. Boyer, H. Lardy and H. Myrbäck (eds.), The Enzymes second ed., Vol. 1. New York, pp. 391–441.Google Scholar
  50. Williams, Robert J.P 1961“Possible Functions of Chains of Catalysts”Journal of Theoretical Biology1117CrossRefGoogle Scholar
  51. Williams, Robert J.P 1962“Possible functions of Chains of Catalysts II”Journal of Theoretical Biology3209229Google Scholar
  52. Williams, Robert J.P 1966Some Theoretical Problems concerning Iron PorphyrinsChance, B.Estabrook, R.W.Yonetani, T. eds. Hemes and HemoproteinsAcademic PressNew York557576Google Scholar
  53. Williams, Robert J.P 1969Electron Transfer and Energy ConservationSanadi, D.R. eds. Current Topics in Bioenergetics 3Academic PressNew York79156Google Scholar
  54. Williams, Robert J.P 1970aElectron transfer, Conformational Changes and Energy ConservationTager, J.M.Papa, S.Quagliariello, E.Slater, E.C. eds. Electron transport and Energy ConservationAdriatica EditriceBari723Google Scholar
  55. Williams, Robert J.P 1970bEnergy Pressure Expressed as Changes in Concentration Terms and Changes in Standard StatesTager, J.M.Papa, S.Quagliariello, E.Slater, E.C. eds. Electron transport and Energy ConservationAdriatica EditriceBari373381Google Scholar
  56. Williams, Robert J.P 1975“Proton-Driven Phosphorylation Reactions in Mitochondrial and Chloroplast Membranes”FEBS Letters53123125CrossRefGoogle Scholar
  57. Williams, Robert J.P 1993“The History of Proton-Driven ATP Formation”Bioscience Reports13191212CrossRefGoogle Scholar
  58. Williams, Robert J.P 2002a“Mitchell and Proticity”The Scientist161416 SeptemberGoogle Scholar
  59. Williams, Robert J.P 2002b“Bioenergetics and Peter Mitchell”Trends in Biochemical Sciences27393394CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryCalifornia State UniversityFullertonUSA
  2. 2.Division of ScienceBennington CollegeBenningtonUSA
  3. 3.School of Biological Sciences, Royal HollowayUniversity of LondonEghamUK

Personalised recommendations