Synergistic effects of Indian hedgehog and sonic hedgehog on chondrogenesis during cartilage repair

Abstract

Sonic hedgehog (Shh) and Indian hedgehog (Ihh) have been shown to control the induction of early cartilaginous differentiation. However, it is unclear whether Ihh and Shh exert synergistic effects on chondrogenesis during articular cartilage repair. Herein, we investigate the effects of chondrogenesis of bone-derived mesenchymal stem cells (BMSCs) following co-transfection with Shh and Ihh via adenoviral vectors in vitro and in vivo. A rotary cell culture system (RCCS) and Cytodex 3 microcarriers were used to create a stereoscopic dynamic environment for cell culture. In the RCCS environment, BMSCs co-transfected with Ihh and Shh displayed stronger chondrogenic differentiation and chondrogenesis than BMSCs transfected with Ihh or Shh alone, and exhibited higher expression levels of Sox 9, ACAN and collagen II, stronger toluidine blue and collagen II immunohistochemical staining. After transplanted into the osteochondral defect at 8 weeks, Ihh/Shh co-transfected BMSCs showed a significantly better cartilage repair than BMSCs transfected with Ihh or Shh alone. Ihh and Shh have synergistic effects on the induction of chondrogenic differentiation and chondrogenesis under a microgravity environment, and help to repair damaged cartilage and reverse subchondral defects during the early stages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmed TA, Hincke MT (2014) Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol 29:669–689. https://doi.org/10.14670/HH-29.669

    CAS  Article  PubMed  Google Scholar 

  2. Amann E, Wolff P, Breel E, van Griensven M, Balmayor ER (2017) Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater 52:130–144. https://doi.org/10.1016/j.actbio.2017.01.064

    CAS  Article  PubMed  Google Scholar 

  3. Calabrese G et al (2017) Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol 8:50. https://doi.org/10.3389/fphys.2017.00050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen L, Liu G, Li W, Wu X (2019a) Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell Mol Biol Lett 24:16. https://doi.org/10.1186/s11658-019-0144-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chen L, Liu G, Li W, Wu X (2019b) Sonic hedgehog promotes chondrogenesis of rabbit bone marrow stem cells in a rotary cell culture system. BMC Dev Biol 19:18. https://doi.org/10.1186/s12861-019-0198-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Costa AR et al (2013) The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SpringerPlus 2:25. https://doi.org/10.1186/2193-1801-2-25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Enomoto-Iwamoto M et al (2000) Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 15:1659–1668. https://doi.org/10.1359/jbmr.2000.15.9.1659

    CAS  Article  Google Scholar 

  8. Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 48:430–441. https://doi.org/10.1002/art.10759

    CAS  Article  PubMed  Google Scholar 

  9. Gupta A et al (2017) Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits. J Tissue Eng Regenerat Med 11:1689–1700. https://doi.org/10.1002/term.2063

    CAS  Article  Google Scholar 

  10. Jo CH et al (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254–1266. https://doi.org/10.1002/stem.1634

    CAS  Article  PubMed  Google Scholar 

  11. Kang H et al (2015) Chondrogenic differentiation of human adiposederived stem cells using microcarrier and bioreactor combination technique. Mol Med Rep 11:1195–1199. https://doi.org/10.3892/mmr.2014.2820

    CAS  Article  PubMed  Google Scholar 

  12. Lafont JE (2010) Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int J Exp Pathol 91:99–106. https://doi.org/10.1111/j.1365-2613.2010.00707.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21:2575–2587

    CAS  Article  Google Scholar 

  14. Lin L, Shen Q, Xue T, Duan X, Fu X, Yu C (2014) Sonic hedgehog improves redifferentiation of dedifferentiated chondrocytes for articular cartilage repair. PloS One 9:e88550. https://doi.org/10.1371/journal.pone.0088550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Liu PC, Liu K, Liu JF, Xia K, Chen LY, Wu X (2016) Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging. Oncotarget 7:62873–62885. https://doi.org/10.18632/oncotarget.11871

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu Z, Lei D, Jiang T, Yang L, Zheng L, Zhao J (2017) Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells. Cell Death Dis 8:e2801–e2801. https://doi.org/10.1038/cddis.2017.208

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Mackie EJ, Tatarczuch L, Mirams M (2011) The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 211:109–121. https://doi.org/10.1530/JOE-11-0048

    CAS  Article  PubMed  Google Scholar 

  18. Morabito C, Steimberg N, Mazzoleni G, Guarnieri S, Fano-Illic G, Mariggio MA (2015) RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures. BioMed Res Int 2015:754283. https://doi.org/10.1155/2015/754283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Peng XX et al (2012) Selection of suitable reference genes for normalization of quantitative real-time PCR in cartilage tissue injury and repair in rabbits. Int J Mol Sci 13:14344–14355. https://doi.org/10.3390/ijms131114344

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Saha A, Rolfe R, Carroll S, Kelly DJ, Murphy P (2016) Chondrogenesis of embryonic limb bud cells in micromass culture progresses rapidly to hypertrophy and is modulated by hydrostatic pressure. Cell Tissue Res 368:47–59. https://doi.org/10.1007/s00441-016-2512-9

    CAS  Article  PubMed  Google Scholar 

  21. Steinert AF et al (2012) Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther 14:R168. https://doi.org/10.1186/ar3921

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Ulbrich C et al (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Res Int 2014:928507. https://doi.org/10.1155/2014/928507

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang C, Yuan X, Yang S (2013) IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp Cell Res 319:623–632. https://doi.org/10.1016/j.yexcr.2012.12.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Warzecha J, Gottig S, Bruning C, Lindhorst E, Arabmothlagh M, Kurth A (2006) Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci: Off J Japan Orthop Assoc 11:491–496. https://doi.org/10.1007/s00776-006-1058-1

    CAS  Article  Google Scholar 

  25. Wayne JS, McDowell CL, Shields KJ, Tuan RS (2005) In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11:953–963. https://doi.org/10.1089/ten.2005.11.953

    CAS  Article  PubMed  Google Scholar 

  26. Wu X, Li SH, Lou LM, Chen ZR (2013) The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Mol Biotechnol 54:331–336. https://doi.org/10.1007/s12033-012-9568-x

    CAS  Article  PubMed  Google Scholar 

  27. Xu X et al (2015) Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin. Arthritis Res Ther 17:20. https://doi.org/10.1186/s13075-015-0537-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Yin H et al (2016) Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater 33:96–109. https://doi.org/10.1016/j.actbio.2016.01.024

    CAS  Article  PubMed  Google Scholar 

  29. Yoshida E, Noshiro M, Kawamoto T, Tsutsumi S, Kuruta Y, Kato Y (2001) Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. Exp Cell Res 265:64–72. https://doi.org/10.1006/excr.2001.5161

    CAS  Article  PubMed  Google Scholar 

  30. Yu B et al (2011) Simulated microgravity using a rotary cell culture system promotes chondrogenesis of human adipose-derived mesenchymal stem cells via the p38 MAPK pathway. Biochem Biophys Res Commun 414:412–418. https://doi.org/10.1016/j.bbrc.2011.09.103

    CAS  Article  PubMed  Google Scholar 

  31. Zhou J, Wei X, Wei L (2014) Indian Hedgehog, a critical modulator in osteoarthritis, could be a potential therapeutic target for attenuating cartilage degeneration disease. Connect Tissue Res 55:257–261. https://doi.org/10.3109/03008207.2014.925885

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 81371950) and the National Natural Science Foundation of China (Grant No. 81772324).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xing Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(pdf 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, G., Li, W. et al. Synergistic effects of Indian hedgehog and sonic hedgehog on chondrogenesis during cartilage repair. J Mol Histol (2021). https://doi.org/10.1007/s10735-021-09964-2

Download citation

Keywords

  • Hedgehog
  • BMSCs
  • Rotary cell culture system
  • Chondrogenic differentiation
  • Cartilage repair